

1

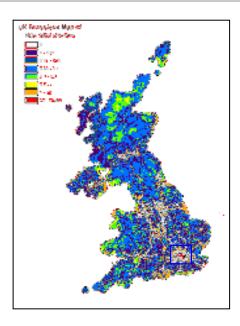
Comparing NAEI emissions with the LAEI

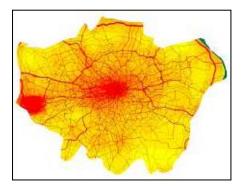
Tony Bush

NAEI stakeholder meeting - Monday 16th July

Overview

- Objectives of this study
- Background to the inventories
- Key issues on inventory preparation
- How do estimates compare
- Reasons for variability & the way forward


Objective of this study


- To review emissions estimates for the London area provided by the 2003 NAEI and LAEI
- To identify and attempt to explain differences
- Broaden the dialogue with inventory compilers
- Driver forward improvements in both NAEI and LAEI

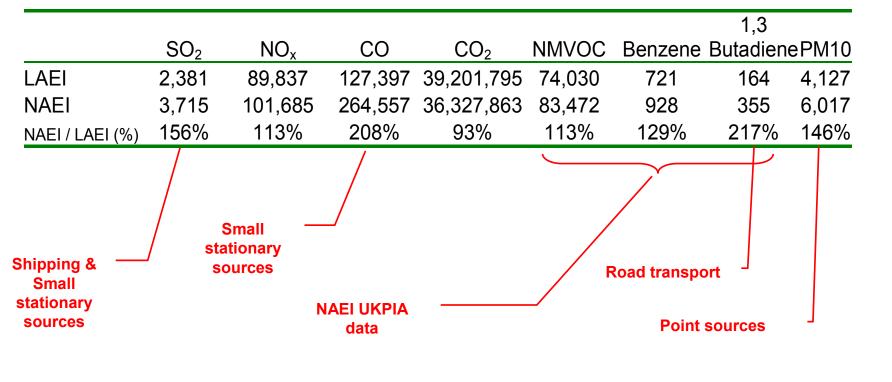
Background to the inventories

- The NAEI is a National inventory focussing on
 - Providing data for UK wide AQ assessments
 - Supporting national policy/strategy (AQS)
 - Servicing UK reporting commitments (UNFCCC/CLRTAP)
- The LAEI is focussed on London
 - Providing data for AQ assessments inside M25
 - Supporting UK & Mayoral policy/strategy (AQS/MAQS)
 - Providing a unique London centric view point key issues

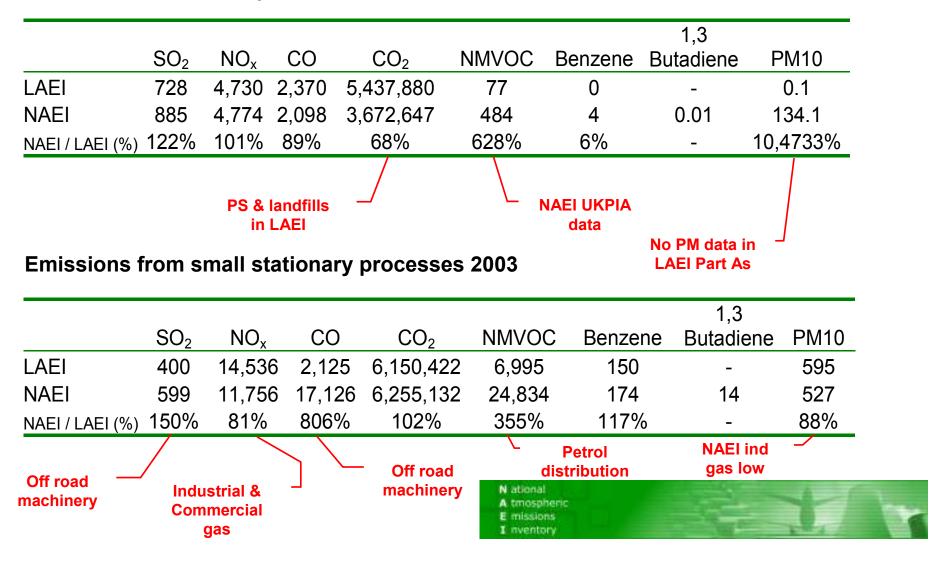
Key issues on inventory preparation

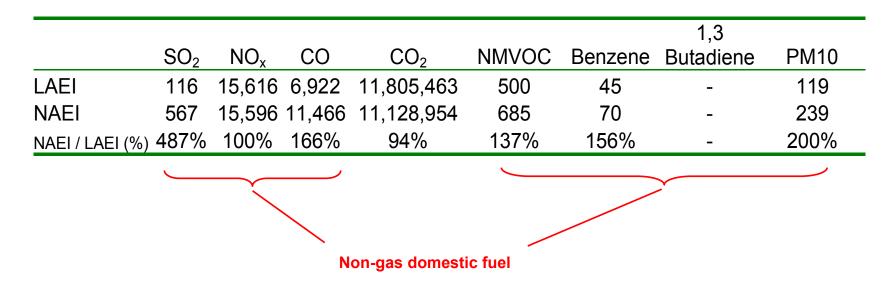
- NAEI is largely top-down
- \Rightarrow Key issue is spatial disaggregation at local level
- National scale necessitates a simplified approach
- \Rightarrow Major and minor road flows, vkm & speeds
- \Rightarrow Nationally averaged vehicle fleets
- \Rightarrow Nationally averaged trip assumption for cold starts
- Estimates based on recognised sectoral standards (UNECE SNAPS)
- ⇒ Sectoral compatibility

LAEI is bottom-up


- \Rightarrow Key issue is generating a complete picture of level of activity
- Local scale enables greater detail
- \Rightarrow Major and minor roads flows, vkm & speeds
- \Rightarrow London specific vehicle fleets
- \Rightarrow London specific trip assumptions for cold starts
- Estimates not based on UNECE SNAP codes
- \Rightarrow Sectoral compatibility

Comparing emission estimates – Totals

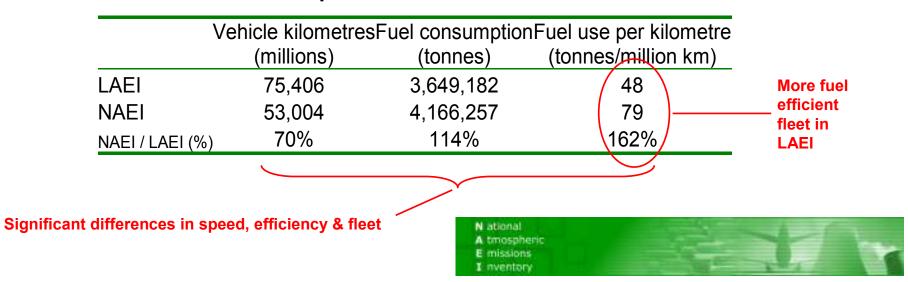

Emissions totals 2003


Comparing emission estimates – Point sources

Emissions from Part A processes 2003

Comparing emission estimates – domestic fuel use

Emissions from domestic fuel use 2003



Comparing emission estimates – Road transport

Road transport 2003

							1,3	
	SO_2	NO _x	CO	CO_2	NMVOC	Benzene	Butadiene	PM10
LAEI	372	45,590	96,854	11,667,871	15,934	408	153	2,995
NAEI	317	63,267	19,7717	13,207187	23,032	482	290	4,040
NAEI / LAEI (%)	85%	139%	204%	113%	145%	118%	190%	135%
	>							
Anomalous								

Vkm and fuel consumption 2003

Comparing emission estimates – Road network

LAEI road network 2003

NAEI road network 2003

Comparing emission estimates – Cold starts

Cold start emissions 2003

							1,3	
	SO_2	NO _x	CO	CO ₂	NMVOC	Benzene	Butadiene	PM10
LAEI	-	460	10753	-	1,197	-	-	110
NAEI	-	7,214	83,408	-	5,141	179	46	358
NAEI / LAEI (%)	-	1,568%	776%	-	430%	-	-	325%

COPERT assumptions, national vs London specific trip averages

Comparing emission estimates – Other transport

Emissions from rail transport 2003 1.3 SO_2 NO_x CO CO_2 NMVOC Benzene Butadiene PM10 LAEI 277 3,702 22,1449 692 138 1,349 -NAEI 48 512 132 13,527 59 0.039 1.840 11 14% 10% 6% 9% 8% <u>NAEI</u> / LAEI (%) 17% Activity data: DeltaRail vs DfT **Emissions from aviation 2003** 1.3 SO_2 NO_x CO CO_2 NMVOC Benzene Butadiene **PM10** LAEI 299 4,241 4,115 1,154,862 3 12 10 119 273.023 428 15 NAEI 287 4,185 22,336 14 23 NAEI / LAEI (%) 96% 99% 543% 24% 16,105% 124% 134% 19% Activity data error & compilation N ational error A tmospheric E missions I nventory

Summary

- NAEI totals for the London are higher than the LAEI
- Comparison is complex & variable by pollutant & sector
- Sectoral incompatibility greatly confuses small stationary sources
- Part As show good correlation but effected by data anomalies & omission of UKPIA data
- LAEI RT fleet appears to be more fuel efficient
- Applicability of national average RT assumptions to London needs further investigation
- Rail & aviation affected by differences in activity & data anomalies
- Differences don't greatly effect outputs of AQ models used in the AQSR

Sectors with greatest				
differential in emission				
Domestic fuel use				
Part B processes & boilers				
Road transport				
Road transport				
Cold starts				
Non-gas domestic fuel use				
Shipping				
Part A processes				
Cold starts				
Non-gas domestic fuel use				
Shipping				
Air				
Domestics gas use				
Shipping				
Part A & B processes				
Cold starts				
Non-gas domestic fuel use				
Shipping Air				
Cold starts				
Non-gas domestic fuel use				
Gas leakage				
Road transport				
Cold starts				
Part A & B processes				
Part A processes				
Cold starts				
Non-gas domestic fuel use				
Shipping				



Looking forward

- New and improved links with the LAEI have been established
 - Routine dialogue
 - NAEI presence on the LAEI user group
 - 2003 comparison has fed into the compilation of the 2004 LAEI
- Work towards a uniform sectoral standard
- Update of NAEI cold start methodology (in hand)
- Reconciliation of NAEI's major/minor roads methodologies against London traffic fleet, counts, speeds & road network
- Inclusion of appropriate & accurate emission data in the NAEI from local inventories UK wide where available

Any Questions ?

