

Today's Presentation:

- Ozone episodes: concentrations and chemistry
- Forecasting ozone episodes
- The Ozone Trajectory Model
- Forecasting success rate
- Features:
 - origins of episodes
 - ozone in urban areas
 - day of the week
 - cloud cover

Summer Smog: ozone

Summer Smog

Ground level ozone episodes

- Hot sunny weather
- Light winds
- Often with transport of air masses from the east

Ozone episodes

- ☐ Index 4: above 100 mgm⁻³ / 50 ppb (Moderate)
- Index 7: above 180 mgm⁻³ / 90 ppb (High)
- ☐ Index 10: above 360 mgm⁻³ / 180 ppb (Very High)

Chemistry

Photochemical reactions between oxides of nitrogen and volatile organic compounds

$$O + O_2 + M = O_3 + M$$

$$NO_2$$
 + radiation = $NO + O$

$$NO + O_3 = NO_2 + O_2$$

- no net ozone production
- but the photochemical degradation of volatile organic compounds (VOC) provides an alternative route for the oxidation of NO to NO₂

Inputs to the ozone forecast

- Ozone Trajectory Model results
- Current data from UK monitoring networks
- Weather forecasts
- Data from other European countries
- Expert analysis

Ozone Trajectory Model

- Ozone formation is complicated:
 - Complex models can include over 100 emitted VOCs, 10,000 reactions, and 3,500 species
 - But these models can take several days to run
- Results from complex models used to develop a forecasting model:
 - Ozone formation in the UK is typically 'VOC limited'
 - Identify the top 20 VOCs contributing to ozone
 - Rate determining step is OH attack on VOC
 - Estimate the number of ozone molecules per VOC

Ozone Trajectory Model

Ozone Trajectory Model

- Simplified chemistry along a forecast 96 hour trajectory:
 - since 1992
 - with updates to the VOC emission inventory and chemical scheme
- Peak hourly concentration predicted at 20 sites for 1, 2 and 3 days ahead

Ozone forecasting success rate

Over 10 regions of the UK: 1998 - 2000

☐ High days measured: 49

☐ High days forecast: 171

Forecast and measured: 39

Forecast and not measured: 132

■ Not forecast and measured: 10

Overall success rate: 80%

Ozone forecasting success rate

- Getting harder to forecast as peak concentrations decline:
 - 57 episodes across 7 regions in 1995
 - 3 episodes across 10 regions in 2000
 - 19 episodes across 10 regions in 2001

Origins of episodes

Origins of episodes

Contributions to photochemical ozone episodes estimated using ozone trajectory model (%):

	UK + Ireland	Europe
9 August 1997	80	20
19 August 1997	25	75

Urban Areas

Sunday

Daily maximum bourly average ozone concentration (ppb) London, 11/08/97

Monday

Number of hours with ozone greater than or equal to 180 ngm⁻³ (90 ppb) 1989 - 1999

- Emissions of ozone precursor chemicals from both traffic and industrial sources are reduced at the weekend
- ☐ Chemistry takes several days as air masses collect emissions and are transported 100s of km
- ☐ Time lag between weekend minimum of emissions and mid week minimum in peak concentrations ozone

Variation of number of hours with ozone greater than or equal to 180 mgm⁻³ (90 ppb) calculated using a complex chemistry model for 31/07/1999 for different days of the week with time varying emissions

Cloud cover

- Model assumes clear skies
- ☐ Therefore overestimates ozone concentrations when it is cloudy
- Currently testing a revision to the model which incorporates the forecast cloud amounts along the trajectory

Recap

- Ozone episodes: chemistry
- Forecasting ozone episodes
- The Ozone Trajectory Model
- Forecasting success rate
- Features:
 - origins of episodes
 - ozone in urban areas
 - day of the week
 - cloud cover

