Intermediate or Screening Dispersion Modelling Tools

6.1 TESTING CAR AND AEOLIUS IN ABERDEEN

Aberdeen City Council was asked to establish a kerbside air quality monitoring station and to "model and assess levels of CO, NOx and PM₁₀ at the kerbside at an automatic monitoring station using a range of models and screening methods". The screening methods selected were:

- CAR International
- **AEOLIUS**

CAR and AEOLIUS were selected because they are both relatively straightforward to use and input data are readily available. They are specifically designed for the assessment of traffic pollution in congested locations and are inexpensive to purchase.

CAR is a Dutch model, developed by TNO and RIVM. It can model the pollutant concentrations due to a single road and can take urban background into account. It includes the pollutants CO, NO₂, benzene and "black smoke" and produces average concentrations and 98th percentile of hourly average concentrations. The modelling period is user-specified and period-specific wind speeds can be used if desired. The model includes two vehicle types, light and heavy duty and the user can specify emissions factors. The model can take road type into account and the user is required to select one of four traffic speed types and five road layout types.

AEOLIUS is a simple street canyon model developed by the UK Meteorological Office. The program calculates hourly average concentrations of pollutants within a street canyon at the roadside.

The input data for CAR are listed in Table 6.1. The emissions factors used by Aberdeen are similar to fleet-weighted factors that would be derived from the DETR emissions factor database (http://www.environment.detr.gov.uk/airq/aqinfo.htm) , which was not available on-line when Aberdeen carried out their work. The monthly results for CAR International are summarised and compared with roadside measurements in Table 6.2. Although the

modelled and measured periods are not strictly comparable, the model clearly underpredicts the concentrations of all three pollutants.

Input data for AEOLIUS is given in Table 6.3. The diurnal variation in traffic flow is illustrated in Figure 6.1. AEOLIUS predicts hourly mean concentrations and an example of the hourly prediction for NO₂ are shown in Figure 6.2, together with the measured hourly concentrations. Like CAR International, AEOLIUS appears to underpredict concentrations at this site.

As both models underpredict, the Aberdeen data suggest they are not useful as conservative screening tools for Stage 2 review data assessments. They are not included in the Department's pollutant specific guidance (DETR et al., 1998b) which only refers to the Highways Agency's Design Manual for Roads and Bridges (DMRB).

6.2 INTERCOMPARISON OF SMALL SCALE DISPERSION **MODELS IN LONDON**

A similar study to that in Aberdeen was carried out by the 33 Authorities in the London First Phase area. Concentrations of CO and NOx estimated by a range of models of varying complexity were compared with measurements alongside the Mile End Road in Tower Hamlets. This road runs approximately east-west and

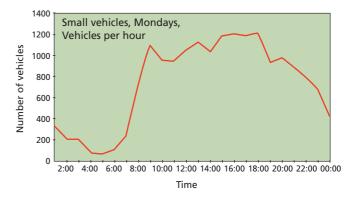


Figure 6.1. Diurnal variation in traffic flow at Union Street.

TABLE 6.1. INPUT DATA FOR CA	R MO	DEL FO	R UNIO	N STREE	T, ABERDEEN
City Diameter	9.6 k	m			
Percentage trucks and buses	12 %				
Number of vehicles	2010	5 per day			
Distance to road axis	8 m				
Road type	3b	Bldgs si	tuated at	a distanc	e from the road axis of 1.5 times the
		height o	f the bldg	s	
Speed type	Vc	Represe	nts avera	ge city spe	eed traffic
Tree factor	1	No trees	s either si	de	
Emissions Factors (g/km/vehicle)		PM_{10}	NOx	СО	
Light duty		0.045	1.65	10.64	
Heavy duty		1.03	10.98	4.21	
Background Concentrations (µgm ⁻³)		0	13	250	
wind speed (knots)		March	April	May	June
		5.74	4.8	4.35	5.07

TABLE 6.2 CAR INTERNATIONAL RESULTS FOR UNION STREET, ABERDEEN													
	NO ₂ (ppb)		CO (ppm)		PM ₁₀ (μgm ⁻³)								
	average	98th	average	98th	average								
	1 hour	percentile	8 hour	percentile	monthly								
March	18.6	51	0.72	2.33	13.9								
April	20.2	54	0.82	2.60	15.8								
May	19.5	52	0.76	2.42	14.6								
June	17.6	48	0.65	2.12	12.5								
Measured values													
March to September	36	110	1.3	3.5 (1 hour)	23								

TABLE 6.3 INPUT DATA FOR AEOLIUS	
Emissions factor for small vehicles (g/km/vehicle)	1.65
Emissions factor for large vehicles (g/km/vehicle)	10.98
Compass bearing to receptor (degrees)	0 (street runs east-west)
Width of street (m)	16
Average height of street buildings (m)	20
Surface roughness length (m)	0.6

carries around 35,000 vehicles per day. The results from the American CALINE 4 model and UK-ADMS were compared in some detail for two three day periods, 20 to 22 May 1996 and 29 October to 1 November 1995. For the former period there was a large diurnal variation in stability with wind speeds in the range 2 to 5 m sec⁻¹ from the west to south-west. For the latter period stability was neutral to stable with wind speeds between 1 and 3 m sec⁻¹. The wind direction varied from northerly to easterly to westerly over the three days.

Background concentrations were taken from a nearby monitoring site and the exercise was aimed at assessing the use of models to estimate the increase of concentrations at the roadside. For these particular periods, ADMS results were better correlated with the measurements than those of CALINE 4. For example, for NOx between 29 October to 1 November, regression of ADMS-modelled hourly mean concentrations against the measurements gave a correlation coefficient, R of 0.61 and a gradient of 0.80. The equivalent statistics for CALINE 4 were 0.38 and 0.67.

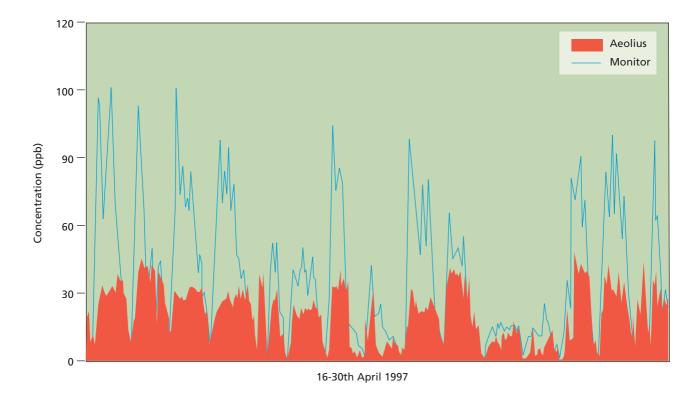


Figure 6.2. Hourly mean concentration of NO₂ (ppb) at Union Street, Aberdeen, predicted by AEOLIUS and measured.

6.3 DERIVATION OF A SCREENING TOOL FOR STREET CANYONS

Cambridge City Council has prepared a look-up table to aid the assessment of street canyons. They created two tables for each pollutant:

Table A relating street height and width to a "critical" emission for the pollutant and Table B relating "critical" emission and peak-hour traffic flow to minimum required traffic speed (to avoid exceeding that "critical" emission).

For Table A, they used AEOLIUS and assumed that the wind direction was parallel to the road and that the wind speed was $2~{\rm m~sec^{-1}}$. For Table B they used the emissions data in the 1984 version

of DMRB. An example of the Cambridge lookup table is shown in Table 6.4. This table allows the user to estimate the emission of NOx above which the air quality objective for NO2 might be exceeded. Cambridge has assumed that the critical hourly mean NOx concentration is 840 ppb. This is slightly more than the DETR guidance recommendation of 700 ppb, but this guidance was not available to Cambridge at the time. The equivalent light vehicle traffic flow, using the emissions factors derived by Aberdeen are shown in Table 6.5. This illustrates that, for a typical street canyon of 15m x 15m, the critical flow would be about 1,600 vehicles per hour. It should be noted, however, that the AEOLIUS model from which Cambridge have derived their table was shown to under-estimate by Aberdeen.

TABLE 6.4. AN EXAMPLE TABLE FROM THE CAMBRIDGE STREET CANYON SCREENING TOOL. THIS SHOWS THE "CRITICAL" NOx

EMIS AND	SION	EMISSION (μg m ⁻¹ sec ⁻¹) WITH RESPECT TO AN HOU AND WIDTH. THE HEIGHT OF THE STREET IN MET	sec ⁻¹ ;	WITI)	H RE	SPEC E STI	T TO.	RESPECT TO AN HOU THE STREET IN MET		M SI	AXIMUM NO ₂ READ FROM		CONCENTRATION OF 150 PPB FOR A GIVEN STREET HEIGHT THE TOP LINE AND THE WIDTH FROM THE FIRST COLUMN.	OP L	ATIOI INE AI	NOF I	.50 PP	В FOI ЭТН F	ROM	VEN S	STREE	COLUMN	IGHT JMN.	
	Н 7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
M																								
7	612	573	542	517	496	479	464	451	439	429	420	412	404	397	391	385	379	374	370	365	361	357	353	350
œ	699	625	591	564	541	522	505	491	478	467	457	448	440	432	425	419	413	407	402	397	392	388	384	380
6	723	929	639	609	584	564	546	530	516	504	493	483	474	466	458	451	445	439	433	428	423	418	414	410
10	777	725	685	653	627	604	585	568	553	540	528	517	508	499	491	483	476	470	464	458	453	448	443	438
11	829	774	731	969	899	644	623	605	589	575	562	551	541	531	522	514	507	200	493	487	482	476	471	466
12	881	822	922	739	708	683	661	641	624	609	596	584	573	563	553	545	537	529	523	516	510	504	499	494
13	931	869	820	781	748	721	697	677	629	643	629	616	604	594	584	575	566	559	551	544	538	532	526	521
14	981	915	863	822	787	759	734	712	693	677	661	648	636	624	614	604	595	587	579	572	565	559	553	547
15	1031	961	906	862	826	796	770	747	727	402	694	629	999	654	643	633	624	615	209	009	592	586	579	573
16	1080	1006	948	902	864	832	805	781	760	742	725	710	269	684	673	662	652	643	635	627	619	612 (909	599
17	1128	1050	066	942	905	869	840	815	793	774	757	741	727	714	702	069	089	671	662	653	646 (638 (631	625
18	1176	1095	1032	981	940	905	875	849	826	806	788	771	756	743	730	719	708	869	689	089	672 (664 (657	650
19	1223	1138	1073	1020	977	940	606	882	858	837	818	801	786	771	758	746	735	725	715	902	869	069	682	675
20	1270	1182	1114	1059	1014	926	943	915	890	868	849	831	815	800	787	774	763	752	742	732	724	715	, 202	200
21	1317	1225	1154	1097	1050	1011	977	948	922	899	879	861	844	829	814	802	790	778	892	758	749	740	732	725
22	1364	1268	1194	1135	1087	1046	1011	981	954	930	606	890	873	857	842	829	816	805	794	784	774	2 992	757	749
23	1410	1311	1234	1173	1123	1081	1044	1013	985	961	939	919	901	885	870	856	843	831	820	608	008	790	782	773
24	1456	1353	1274	1211	1159	11115	1078	1045	1017	991	696	948	930	913	268	883	869	857	846	835	825 8	815 8	, 908	798
25	1501	1395	1314	1248	1195	1149	1111	1077	1048	1021	866	977	958	940	924	606	968	883	871	860	850 8	840 8	830	822
26	1547	1438	1353	1286	1230	1183	1144	1109	1078	1052	1027	1006	986	896	951	986	922	606	268	885	874 8	864 8	855	846
27	1592	1479	1392	1323	1265	1217	1176	1141	1109	1081	1057	1034	1014	995	878	963	948	934	922	910	3 668	888	879	869
28	1637	1521	1431	1360	1301	1251	1209	1172	1140	1111	1086	1063	1042	1023	1005	686	974	096	947	935	924 9	913	903	893
29	1682	1563	1470	1396	1336	1285	1241	1204	1170	1141	11115	1091	1069	1050	1032	1015	1000	985	972	096	948	937	927	917
30	1727	1604	1509	1433	1371	1318	1274	1235	1201	1171	1144	11119	1097	1077	1058	1041	1026	1011	266	984	972 9	961	950	940

30	00	0.8	0.8	0.9	1.0	1.0	1.1	1.1	1.2	1.3	1.3	1.4	1.4	1.5	1.5	1.6	1.6	1.7	1.8	1.8	1.9	1.9	2.0	2.0	2.1
29	9	0.8	8.0	6.0	1.0	1.0	1.1	1.2	1.2	1.3	1.3	1.4	1.4	1.5	1.6	1.6	1.7	1.7	1.8	1.8	1.9	1.9	2.0	2.0	2.1
28	04	0.8	6.0	6.0	1.0	1.0	1.1	1.2	1.2	1.3	1.3	1.4	1.5	1.5	1.6	1.6	1.7	1.7	1.8	1.8	1.9	2.0	2.0	2.1	2.1
27	4	0.8	6.0	6.0	1.0	1.1	1.1	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.6	1.6	1.7	1.8	1.8	1.9	1.9	2.0	2.0	2.1	2.1
26	0	0.8	6.0	6.0	1.0	1.1	1.1	1.2	1.3	1.3	1.4	1.4	1.5	1.6	1.6	1.7	1.7	1.8	1.8	1.9	1.9	2.0	2.1	2.1	2.2
25	2	0.8	6.0	1.0	1.0	1.1	1.1	1.2	1.3	1.3	1.4	1.5	1.5	1.6	1.6	1.7	1.7	1.8	1.9	1.9	2.0	2.0	2.1	2.1	2.2
24	4	0.8	6.0	1.0	1.0	1.1	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.6	1.7	1.7	1.8	1.8	1.9	1.9	2.0	2.1	2.1	2.2	2.2
23	3	0.8	6.0	1.0	1.0	1.1	1.2	1.2	1.3	1.4	1.4	1.5	1.6	1.6	1.7	1.7	1.8	1.9	1.9	2.0	2.0	2.1	2.1	2.2	2.3
22	1	0.8	6.0	1.0	1.1	1.1	1.2	1.3	1.3	1.4	1.5	1.5	1.6	1.6	1.7	1.8	1.8	1.9	1.9	2.0	2.1	2.1	2.2	2.2	2.3
21	1	0.9	6.0	1.0	1.1	1.1	1.2	1.3	1.4	1.4	1.5	1.5	1.6	1.7	1.7	1.8	1.9	1.9	2.0	2.0	2.1	2.2	2.2	2.3	2.3
20	9	0.9	1.0	1.0	1.1	1.2	1.2	1.3	1.4	1.4	1.5	1.6	1.6	1.7	1.8	1.8	1.9	1.9	2.0	2.1	2.1	2.2	2.2	2.3	2.4
19	7	0.9	1.0	1.0	1.1	1.2	1.3	1.3	1.4	1.5	1.5	1.6	1.7	1.7	1.8	1.9	1.9	2.0	2.0	2.1	2.2	2.2	2.3	2.4	2.4
18	10	0.9	1.0	1.1	1.1	1.2	1.3	1.4	1.4	1.5	1.6	1.6	1.7	1.8	1.8	1.9	2.0	2.0	2.1	2.1	2.2	2.3	2.3	2.4	2.5
17		0.9	1.0	1.1	1.2	1.2	1.3	1.4	1.5	1.5	1.6	1.7	1.7	1.8	1.9	1.9	2.0	2.1	2.1	2.2	2.3	2.3	2.4	2.5	2.5
16	10	0.9	1.0	1.1	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.7	1.8	1.8	1.9	2.0	2.0	2.1	2.2	2.2	2.3	2.4	2.4	2.5	2.6
70	10	1.0	1.1	1.1	1.2	1.3	1.4	1.5	1.5	1.6	1.7	1.7	1.8	1.9	2.0	2.0	2.1	2.2	2.2	2.3	2.4	2.4	2.5	2.6	2.6
14	†	1.0	1.1	1.2	1.2	1.3	1.4	1.5	1.6	1.6	1.7	1.8	1.9	1.9	2.0	2.1	2.2	2.2	2.3	2.4	2.4	2.5	2.6	2.6	2.7
133	7	1.0	1.1	1.2	1.3	1.4	1.5	1.5	1.6	1.7	1.8	1.8	1.9	2.0	2.1	2.1	2.2	2.3	2.4	2.4	2.5	2.6	2.7	2.7	2.8
12	7	1.1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.8	1.9	2.0	2.1	2.1	2.2	2.3	2.4	2.5	2.5	2.6	2.7	2.8	2.8	2.9
1	1	1.1	1.2	1.3	1.4	1.5	1.6	1.6	1.7	1.8	1.9	2.0	2.1	2.1	2.2	2.3	2.4	2.5	2.5	2.6	2.7	2.8	2.9	2.9	3.0
10	10	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.2	2.3	2.4	2.5	2.6	2.7	2.7	2.8	2.9	3.0	3.1	3.2
6	0	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.1	3.2	3.3
oc	0	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.3	3.4	3.5
7	-	1.3	1.5	1.6	1.7	1.8	1.9	2.0	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8
H	M		∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30