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Summary key points

General points

1. Nine models or model variants have been considered in this report: AEA-CMAQ

and OSRM from Ricardo-AEA; AQUM and NAME from the Met Office, EMEP-

4-UK from CEH, KCL-CMAQ from King’s College London, the PTM from

rdscientific, Hertfordshire-CMAQ from the University of Hertfordshire and WRF-

Chem from the University of Manchester. The models include three variants of the

CMAQmodel, set up and run according to practises at each institution. In addition

to these models, an ‘ensemble’ model was constructed by taking the mean hourly

values by measurement site of six of the models that predicted at every site. The

ensemble model was evaluated in the same way as the main models to determine

whether ensemble modelling improved the comparison with measurements. The

ensemble model also conveniently shows the ‘typical’ response of models.

2. Almost all models provided predictions for 23 measurement sites across the UK

and Mace Head in Ireland. These receptors include 17 sites in rural areas and 7

at urban background locations in London, Manchester and Birmingham. Hourly

mean predictions of O3, NOx (NO and NO2), NOy, HNO3, H2O2 were made for

each receptor location for 2006. Most results have been considered separately for

rural and urban locations.

3. The evaluation has focused on several key areas. These areas include an evaluation

at a location where ‘baseline’ or ‘background’ O3 dominates (Mace Head), the

ability of the models to predict specific O3 metrics of relevance to air quality policy,

the effect of precursor (NOx and VOC) emission reductions at a UK and European

scale and the performance of the models in predicting common meteorological

variables measured at Met Office surface stations in the UK.

Comparison with measurements

4. The models are shown to predict annual mean rural O3 concentrations within 10%,

with a tendency towards a slight positive bias.

5. The models tend to show a positive bias when predicting the annual mean O3

concentration at urban receptors. The higher postive bias in urban areas (typically

around +20%) is likely due to model grid resolution and the ability to adequately

model urban NOx concentrations. Nevertheless, KCL-CMAQ does not show as

strong a positive bias and has a lower error in urban areas compared with other

models. The estimation of urban NOx emissions could also be important e.g.

underestimates would tend to result in increased concentrations of urban O3.

6. For higher concentration O3 metrics the models give a wider range of predic-

tions. For the number of days with a daily maximum of running 8-hour means

>100 µg m−3 (50 ppb), the range of predictions across the models is large at about

±25 days— compared with a typical observed value of about 30 days. The models

predict most sites within a factor of two, but not within a mean bias of ±20%.
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7. For the maximum daily mean O3 concentration almost all models predict within a

±20% bias, with a tendency towards negative bias in both rural and urban locations.

8. The models do not tend to explain the variation between sites very well for the

three metrics considered above, as most of the time the predictions are no better

than taking the mean of all measurements.

9. As noted above, most models fail to capture higher O3 concentrations well. Cluster

analysis shows (using Lullington Heath as an example) that the ‘missed’ conditions

arise when air-masses come from continental Europe in summertime. For AEA-

CMAQ highest O3 concentrations at Lullington Heath are associated with Atlantic

air-mass origins, suggesting that it misses some of the important high concentration

conditions when air masses are from Europe.

10. Consideration has also been given to predictions of NOx and NO2 in urban and

rural areas. Broadly speaking the models tend to underestimate NOx concentra-

tions in urban areas and overestimate concentrations in rural areas. For all areas,

typically about half the annual mean NOx predictions are within a factor of two.

While it would be expected that large grid models would tend to underestimate

concentrations in urban areas, not all models show this characteristic. In particular,

the KCL-CMAQ model predicts NOx, NO2 (and O3) well in urban areas.

11. Brief comparisons have been made with the new daily air quality index for O3,

which is on a scale from 1–10 (‘low’ to ‘very high’) over June and July 2006. These

results show that all models tend to overestimate the index (concentration) for low

values of the index and underestimate the index when the index (concentration) is

‘high’. The variation between the models is substantial. For example, when the

observed O3 concentration is at level 7 (High) the corresponding modelled O3 is

typically at level 4, the lowest level on the moderate scale (on average). However,

there are large differences between the models. For the same conditions, AQUM for

example would estimate the index to be 5 (middle of the moderate range), whereas

WRF-Chem would be 3.

12. Overall it is difficult to identify model performance consistency. Models that do

well for some higher concentration metrics do less well with others.

13. The predictions made by themodels for threshold-type statistics such as the number

of days where the maximum rolling 8-hour mean is >100 µg m−3 are very sensitive

to small uncertainties in the predicted O3 concentration. For example, for the

EMEP-4-UK model at Harwell, the estimate varies from 20 to 78 days for a ±10%

uncertainty in predicted O3 concentration. This variation is similar to the range

seen across the different models. Care should be exercised when comparing model

predictions for threshold-type statistics, even if they are important health-based

standards or limits.

14. In urban areas there is a relationship between the mean bias of a NOx (and O3)

concentration and model grid size and emission. Models with larger grid sizes

tend to underestimate concentrations of NOx and overestimate concentrations of

O3. In addition, there is an important effect of the emission estimate used. The

KCL-CMAQ model tends to predict urban NOx and O3 concentrations well. This
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model has a relatively small grid size and assumes higher urban NOx emissions

than other models. These results suggest that the models can predict urban O3 and

NOx concentrations well provided they use a suitable grid size and representative

NOx emissions estimates.

Boundary conditions — analysis of Mace Head data

15. The model predictions have been compared at the Mace Head site, which is most

strongly affected by the model boundary conditions assumed in each model to

better understand the influence of the lateral boundary conditions used by the

models.

16. Cluster analysis has been used to extract air-mass origins from the ‘clean’ Atlantic to

understand how the models differ. It is found that EMEP-4-UK and Hertfordshire-

CMAQ have the best overall agreement for these air-mass origins. Furthermore,

the NAME model is shown to systematically underestimate O3 concentration by

≈6 ppb and the KCL-CMAQ model overestimate concentrations by about 3 ppb.

Very similar results are seen when using a more comprehensive air mass alloca-

tion approach to isolate ‘baseline’ conditions. It is difficult however to relate the

boundary conditions for O3 to predictions of O3 at sites across the UK.

17. Themodel ensemble provided the best overall agreement with measurements across

all the comparisons made.

Effect of precursor emission reductions

18. Four emission reduction scenarios have been considered to test how the model

predictions of O3 respond for different O3 metrics. These are:

Scenario S1 reduction of total anthropogenic NOx and VOC by 30% across the

UK + Europe;

Scenario S2 reduction of total anthropogenic NOx and VOC by 30% across the

UK only;

Scenario S3 reduction of total anthropogenic NOx by 30% across UK + Europe

and,

Scenario S4 reduction of total anthropogenic VOC by 30% across UK + Europe.

These emission reduction scenarios are primarily used to test how the models

respond to emission changes rather than representing specific policy-relevant re-

duction scenarios.

19. For annual mean O3 concentrations For scenarios S1 to S3, all models show that an

increase in O3 concentrations can be expected at both urban and rural locations.

The increase in O3 is more pronounced in urban areas due to the reduction in

emissions of NOx. Only scenario S4 (30% reduction in VOCs) would lead to more

general reductions in the concentration of O3. There is, however, a very wide range

in O3 predictions at specific receptors. For example, for scenario S1 at Harwell,

the annual mean O3 is predicted to increase by between 1 to 6 µg m−3. There is

only a minor difference in the effect of Scenario S1 (NOx/VOC reduction UK +

Europe) and scenario S2 (NOx/VOC reduction UK only).
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20. For a higher concentrationmetric such as the number of days with a daily maximum

of running 8-hour means >100 µg m−3, the effect of the scenarios is as follows. For

S1 there tends to be a small increase in O3 concentrations in urban areas and small

decreases in the most rural areas and little change predicted elsewhere. For S2 and

S3 almost all locations show an increase in the number of days exceeding can be

expected. Again, reducing only VOCs (S4) is the only scenario that consistently

reduces exceedances days across all sites by between 1 and 6.

21. A general and important characteristic of all scenarios run is that the models give

a very wide range in responses to O3 predictions. The wide range of responses

is important because Defra can expect the predicted efficacy of measures to vary

widely depending on model choice. This is the case both for longer term average

concentrations e.g. annual means and higher concentration O3 metrics.

22. For the higher concentration O3 metrics both the sign and the magnitude of the O3

change can vary depending on the model used. For example, the number of days

with a daily maximum of running 8-hour means >100 µg m−3 for scenario S1 in

rural areas the models predict either a slight overall increase in the days exceeding

the limit (AQUM, 1.6 days on average) to a relatively large decrease (EMEP-4-UK,

6.1 days on average). In urban areas there is an even larger range of responses e.g.

a decrease of 2 days for EMEP-4-UK to an increase in 7 days for KCL-CMAQ.

The increases for KCL-CMAQ is likely related to the generally better performance

for NOx concentration predictions in urban areas for this model, where reductions

in NOx emissions would be expected to increase urban O3 concentrations.

NOx and VOC sensitivity

23. The scenarios S3 and S4 (NOx and VOC reduction UK + Europe) allows an

investigation of NOx and VOC-sensitive regimes i.e. whether reducing NOx or

VOCs would be most beneficial for O3 reduction. These effects are analysed with

respect to different ‘indicator species’ that help to show whether a model tends to

be in a NOx or VOC-sensitive regime. These results show the transition from VOC

to NOx-sensitive regimes is reasonably consistent across the models and consistent

with the original findings of Sillman (1995). However, the results from the NAME

model could highlight issues with the data and the Hertfordshire-CMAQ results

show much lower sensitivity to changes in NOx or VOCs compared with the other

models. The latter results may explain why Hertfordshire-CMAQ tends to result

in less change in O3 concentrations for scenarios S3/S4 in comparison with the

other models.

24. The results show that for peak (maximum daily of rolling 8-hour mean) O3 con-

centrations at Harwell that the models range from almost entirely VOC-sensitive

(AQUM and NAME) to almost entirely NOx sensitive (Hertfordshire-CMAQ).

It should be noted however that O3-NOx-VOC sensitivity at individual locations

and for specific events is often very uncertain and the these results reflect that

point. The sensitivity will be very dependent on both emission assumptions (e.g.

adequacy of absolute emission estimates and VOC speciation) but also the whole

chemistry-transport system. It is therefore perhaps not very surprising that the

models do not agree well in this respect. However, from a policy perspective these
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findings are important because it cannot be said with certainty whether reducing

NOx or VOCs is the most beneficial approach for reducing peak O3 concentrations.

25. Considering a wider range of O3 sites reveals more consistent model behaviour.

For example, the models tend to show a south-east, north-west gradient, with the

south east of England being more VOC-sensitive and the north-west of the UK

and Ireland being more NOx sensitive. AQUM, NAME and EMEP-4-UK tend

to predict that the south-east of England is more VOC-sensitive than the other

models. The models are therefore reasonably consistent in identifying the spatial

variation in NOx and VOC sensitivity, but as noted previously, in intermediate

environments there can be a wide range of model responses.

26. There is more consistency in answer to the question whether action taken at a UK

level is more effective than action at a UK+European level. The results show that

for almost all models and locations it is better to take action at a UK+European

level than only at a UK level. However, the NAME model tends to show a greater

number of days at all sites where action taken at a UK level is more effective.

Furthermore, there is some indication for a few sites in the south-east of England

that this is also the case.

27. It is found that there is a strong relationship between the European VOC emission

estimates used in the models and the extent to which the models are NOx or

VOC sensitive. In particular, the assumptions concerning European biogenic VOC

(BVOC) estimates vary considerably between the models and influence the extent

to which the models respond to NOx or VOC control. For example, O3 predictions

using NAME (zero BVOC) are much more sensitive to VOC reductions compared

withHertfordshire-CMAQ for example that assumes much higher European BVOC

emissions. Indeed, it can be shown that at a site such as Harwell the models vary

from being predominately VOC sensitive to NOx sensitive, which depends on the

VOC emission assumptions.

Surface meteorological predictions

28. Most models have provided hourly predictions of common meteorological variables

including wind speed, wind direction, ambient temperature and relative humidity.

These predictions were made at 11 Met Office surface stations for 2011.

29. In general the models predict the surface variables above well with the best perform-

ing models overall being AQUM, KCL-CMAQ and NAME for wind speed. There

was some evidence that AEA-CMAQ and Hertfordshire-CMAQ tended to show

less diurnal variation in wind speeds than is present in the measurements. Con-

sidering the relationship between surface O3 predictions and meteorology shows

that there is no obvious relationship between poor O3 predictive performance and

simultaneously poor performance in meteorological predictions; except perhaps for

the urban receptors.

30. Across all meteorological sites AEA-CMAQ and KCL-CMAQ show a similar

positive bias of ≈20 degrees. AQUM and NAME show a slight positive bias of 7 to

12 degrees. Hertfordshire-CMAQ only has a bias of 4 degrees. The analysis also
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shows that the spread in wind directions for the models tends to be quite narrow

and the most important characteristic of wind direction predictions in the positive

bias shown by several of the models.

31. Model predictions of boundary layer height (BLH) vary considerably between the

models. However, these variations do not translate to clear differences in model

performance for O3. BLH itself may not be a sufficiently useful quantity in this

respect and a deeper consideration of the vertical structure of the atmosphere may

be necessary.

32. It should be stressed that the meteorological comparisons consider only surface

observations and not profile measurements. The latter may reveal more useful

model deficiencies. In particular, there is no clear relationship between the quality

of the meteorological prediction and the concentration of O3, that could perhaps

be revealed by considering by other meteorological variables or derived quantities

related to vertical mixing.

33. The generally good quality meteorological predictions suggests that modelled

values could usefully be substituted for surface observations or help predict in

locations without surface measurements.
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1 Introduction

1.1 Background

This report summarises the main findings of Phase 2 of the Defra Model Evaluation Exer-

cise. The report focuses on the use of models that consider transboundary air pollution,

and specifically the prediction of surface O3 concentrations. In Phase 1, the evaluations

were focused on comparing hourly concentrations of O3 across 11 measurement sites in

the UK.1 Phase 2 builds on this analysis and extends Phase 1 to consider a wider range

of issues following a meeting with the model groups.

Model evaluations can cover an enormous range of issues and can involve very detailed

types of analysis. The main aims of this report are:

1. To focus on important metrics for ambient O3 concentrations. There are many O3

metrics in use which are directly related to European Directives or wider health

concerns and it is useful to know how well the models predict O3 concentrations

for a range of these metrics.

2. To consider model performance with respect to NOx and NO2 and how well the

models predict common surface meteorological measurements including wind

speed, wind direction, ambient temperature and relative humidity.

3. To understand the range in predicted concentrations thatmight be expected through

using different modelling systems. Defra could in principle rely on any one of these

models for policy purposes and it is important to know how sensitive predictions

are to different models and model configurations.

4. To understand how O3 concentrations respond to different precursor emission

controls. In this report several scenarios at the European and UK scale are assessed

that consider reductions in the emissions of NOx and VOCs.

It should be stressed that while many useful comparisons can be made between the

models, there are limits to the analyses that can be undertaken before specific model

sensitivity runs are required e.g. to test the importance of emission assumptions on the

predictions.

Similar to the Phase 1 report, the analysis of the models is based on the year 2006. This

year was initially chosen because many of the groups involved had already configured

their models for 2006 as part of other activities e.g. for the USA-European Air Quality

Model Evaluation International Initiative (AQMEII) (Galmarini and Rao 2011; Rao

et al. 2011; Appel et al. 2012). It is useful to put 2006 into perspective by comparing

some of the key O3 statistics with those since 2000 to 2012. At Harwell for example the

annual mean O3 concentration was 27 ppb and was the 5th highest over those 13 years.

However, 2006 was a more important year for peak O3 concentrations. The maximum

rolling 8-hour mean O3 concentration was 92 ppb and was the third highest over the 12

years. Finally, in terms of the days where the maximum rolling 8-hour mean is >50 ppb

(100 µg m−3) it can be shown 2006 was a high year with 31 days; second only to 2003

(66 days). In 2006 the high peak concentrations of O3 were experienced during July,

which is considered specifically in this report.

1The phase 1 report can be found at http://uk-air.defra.gov.uk/reports/cat20/1105091514_

RegionalFinal.pdf

http://uk-air.defra.gov.uk/reports/cat20/1105091514_RegionalFinal.pdf
http://uk-air.defra.gov.uk/reports/cat20/1105091514_RegionalFinal.pdf
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During 2006 there were also periods where biomass burning in Russia had an influence

on air quality in the UK. For example Saarikoski et al. (2007) report periods of high

PM2.5 concentrations during the spring of 2006 in Helsinki. Witham andManning (2007)

report elevated PM10 concentrations in the UK during May and September 2006 due to

Russian wild fires. It is possible given the relative increased frequency of these events

during 2006 compared with other years that they may also have had an influence of O3

concentrations. Such an influence is difficult to detect in a clear way in the observations

but may nevertheless have had an influence. Considering another year would help to

establish the importance of these effects.

1.2 The models evaluated

A wide range of models for predicting surface O3 concentrations have been considered in

this report. Not all models provided hourly mean results for all receptors for a full year.

WRF-Chem provided results for mid June to the end of July for base case and Scenario 1.

The PTM model provided results for Harwell only at a single time (3:00–3.15pm) each

day. Where possible full data sets have been analysed i.e. the whole of 2006 because that

makes it possible to compare the model outputs with a range of O3 metrics e.g. UK/EU

limits which generally require a full year of data. The lack of full data sets for all models

means that it has not been possible to evaluate the performance of all models in an entirely

consistent way.

The models made predictions at the receptor locations shown in Table 1.1.2 While

the types of model evaluated in this report (i.e. regional, large grid size models) would

generally be used for predictions of O3 in rural areas it is also important to consider their

performance in urban areas. Urban areas will have higher populations exposed and O3

concentrations can be expected to increase in urban areas in future as local NOx emissions

are increasingly controlled.

Meteorological predictions were provided by all models except OSRM and the PTM.

The following text gives a brief overview of the models based on the responses to a

questionnaire developed by Defra.

2Note that the NAME model did not provide predictions at all sites shown in Table 1.1.
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T .: Receptor locations considered in this report.

site code latitude longitude site.type

Aston Hill AH 52.50 -3.03 Rural Background

Birmingham Tyburn BIR1 52.51 -1.83 Urban Background

Bottesford BOT 52.93 -0.81 Rural Background

Bush Estate BUSH 55.86 -3.21 Rural Background

London Bloomsbury CLL2 51.52 -0.13 Urban Background

Eskdalemuir ESK 55.32 -3.21 Rural Background

Glazebury GLAZ 53.46 -2.47 Rural Background

Harwell HAR 51.57 -1.33 Rural Background

High Muffles HM 54.33 -0.81 Rural Background

London N. Kensington KC1 51.52 -0.21 Urban Background

Ladybower LB 53.40 -1.75 Rural Background

Lullington Heath LH 50.79 0.18 Rural Background

Lough Navar LN 54.44 -7.90 Rural Background

London Eltham LON6 51.45 0.07 Suburban Background

Manchester Piccadilly MAN3 53.48 -2.24 Urban Background

Manchester South MAN4 53.37 -2.24 Suburban Background

Mace Head MH 53.33 -9.90 Rural Background

Rochester Stoke ROCH 51.46 0.63 Rural Background

Sibton SIB 52.29 1.46 Rural Background

Strath Vaich SV 57.73 -4.78 Rural Background

London Teddington TED 51.42 -0.34 Urban Background

Wicken Fen WFEN 52.30 0.29 Rural Background

Yarner Wood YW 50.60 -3.72 Rural Background

1.2.1 AEA-CMAQ

In common with two other groups Ricardo-AEA use the EPA Community Multiscale Air

Quality (CMAQ) modelling system http://www.cmaq-model.org. CMAQ is designed

for applications ranging from regulatory and policy analysis to understanding the complex

interactions of atmospheric chemistry and physics. It is a three-dimensional Eulerian

atmospheric chemistry and transport modelling system that simulates ozone, particulate

matter (PM), toxic airborne pollutants, visibility, and acidic and nutrient pollutant species

throughout the troposphere. Designed as a ‘one-atmosphere’ model, CMAQ can address

the complex couplings among several air quality issues simultaneously across spatial scales

ranging from local to hemispheric.

Numerical weather data are produced using WRFv3 on the same scale as CMAQ.

Boundary and forcing conditions are provided by ECMWF for 2006.

At Ricardo-AEA it has been run at horizontal resolutions of 48 km (Europe) and 12 km

(UK) for this study and the AQ forecasting. The 48+12 km simulation uses a 26 layer

vertical structure with 12 layers below 800m and a lowest layer of 9 m.

European emissions are based on the 2006 EMEP emissions UK emissions are based on

the 2006NAEI. Temporal profiles from Jenkin et al (2000) are used for the main emissions

SNAP sectors. Natural emissions are based on the Biogenic Potential Inventory.

1.2.2 AQUM

AQUM is a limited area configuration of the Met Office Unified Model (MetUM) which

uses the UKCA chemistry scheme (Savage et al. 2013). The MetUM is a sophisticated

system capable of modelling regions from limited areas to globally and with timescales

http://www.cmaq-model.org
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from less than hourly to climate scales. UKCA development first began in 2003 as part

of a joint project initially comprising the Met Office and the universities of Cambridge

and Leeds, with the aim of building a chemistry and aerosols sub-model within the Met

Office’s Unified Model for use in climate modelling. Since 2005, AQUM (Air Quality in

the Unified Model) has been developed by the Met Office as a configuration of UKCA

for modelling regional air quality. AQUM is run online, as part of the Met Office Unified

Model, which is an Eulerian meteorological model.

For modelling air quality in the United Kingdom, the following emissions data sets are

typically used: NAEI emissions at 1 km × 1 km resolution over the UK, ENTEC— 5 km

× 5 km emissions (2007) for shipping surrounding the UK and EMEP emissions at 0.5° ×
0.5° over the remainder of Europe. AQUM uses the RAQ (Regional Air Quality) scheme,

which is an updated version of the STOCHEM chemical mechanism. Dry deposition is

based on a Wesely scheme.

1.2.3 EMEP-4-UK

The EMEP-4-UK model (Vieno et al. 2010) is based (and kept updated) on the EMEP

MSC-W model (Simpson et al. 2012). The development of the EMEP-4-UK model

first stared in 2006 by Massimo Vieno (University of Edinburgh, CEH Edinburgh), Peter

Wind and David Simpson (Norwegian Meterological Institute).

Meteorology is based onWRF 2.2, 3.1.1, and 3.2. For emissions EMEP uses the NAEI

for the UK and EMEP everywhere else. EMEP-4-UK was run at a spatial resolution

of 50 km × 50 km to provide initial and boundary conditions. It was then run at a finer

resolution of 5 km × 5 km for the main model results.

For chemistry the model uses the EMEP MSC-W model chemistry scheme, although

a run has also been based on an alternative scheme (see below). For deposition use is

made of the EMEP MSC-W model deposition scheme.

1.2.4 Hertfordshire-CMAQ

The University of Hertfordshire also use CMAQ (together with Ricardo-AEA and KCL).

The version used in this study was 4.7.1 (released June 2010). Hertfordshire-CMAQ

used a grid resolution of 18 km and WRF 3.2.1. Emissions were based on the TNO

inventory and chemistry from CB05. The boundary conditions were based on data from

Geos-Chem.

1.2.5 KCL-CMAQ

KCL also use the CMAQ model described above. In the present study, European emis-

sions were based on EMEP (2005) and UK emissions on NAEI (2005) and (2006).

Meteorological data were based onWRF3.1. The chemical mechanism used was Carbon

Bond-05 with aerosol and aqueous chemistry. The dry deposition scheme was based

on a surface exchange aerodynamic method of Pleim et al. (2001) which uses surface

resistance, canopy resistance and stomatal resistance to compute dry deposition velocities.

KCL-CMAQ was run at a 9 km grid resolution for the UK.
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1.2.6 NAME

NAME is a 3 dimensional Lagrangian dispersion model. Pollutant emissions are represen-

ted by releasing millions of air parcels, each able to represent the released mass of many

different species. The air parcels are carried by the three-dimensional wind field obtained

from the Met Office’s Unified Model (UM). Local turbulent motion is simulated using a

random walk technique which requires a diffusion coefficient calculated from the local

turbulent velocity variance and the local turbulent timescale. Above the boundary layer

these two quantities are fixed, but within the boundary layer they are defined in terms of

the local atmospheric stability and local surface quantities. A detailed description can be

found in Morrison and Webster (2005). The UM provides direct output of boundary

layer height for use in NAME. The model dry deposition scheme is based on a resist-

ance analogy parameterisation to calculate a species dependent deposition velocity. It

is applied to all air parcels within the boundary layer. The wet deposition method uses

scavenging coefficients to model washout and rainout of pollutants.

1.2.7 OSRM

The development of theOSRM (Ozone Source ReceptorModel) has been led byRicardo-

AEA working through an enduring consortium of leading UK experts under contract to

Defra (and previous Departments) since 1999 (Hayman et al. 2010). Following the initial

design of the model in a research and development stage, various features of the model

were enhanced to improve model performance, to take account of further developments

in the underlying science and to make the model more suitable for direct application to

Defra air quality policy. Since around 2005, the emphasis has shifted from development

to maintenance and application of the model as a policy tool for examining the response

of the UK ground-level ozone climate to changes in precursor emissions in the UK and

Europe.

OSRM is a trajectory model. The OSRM is used annually to model UK ground-level

ozone concentrations at 10 km × 10 km resolution (at 3,000 specified receptors). The

model can also be used to produce the annual metrics for 41 specific monitoring sites and

in addition, hourly averages at each site. The UK emissions are based on the NAEI and

the rest of Europe on the EMEP 50 km × 50 km inventory.

The UKMet Office provides meteorological datasets derived from the NAME model.

30 boundary layer meteorological parameters are provided at 6-hourly resolution over a

year, covering a domain from 30°W to 40°E and 20° to 80°N at 1°spatial resolution. These

data are used to derive 96-hour back trajectories to specified receptors. The OSRM now

has met data in this form for each calendar year from 1999 to 2011.

The current version of the OSRM uses an updated version of the mechanism in STO-

CHEM: 70 chemical species involved in 195 thermal and photochemical reactions.

1.2.8 PTM

The PTM (Photochemical Trajectory Model) model is a moving air parcel trajectory

model that is used to describe photochemical ozone and fine particle formation in north

west Europe. The PTM model is used to quantify the contribution made by each VOC

species and each VOC source category to the long-range transboundary formation and

transport of ozone and PM across North West Europe. These contributions are defined

in terms of Photochemical Ozone Creation Potentials POCPs and SOAPs.
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The PTM uses SO2, NOx, NH3, VOCs, CO and CH4 emissions taken from 2010

version of NAEI for the UK and SO2, NOx, NH3, VOCs, CO and CH4 emissions for

the rest of Europe were taken from the EMEP webdab (2010). Isoprene emissions were

taken from EMEP. Terpene emissions were taken from Hope Stewart and Nick Hewitt

for UK and GEIA for Europe.

4-day 3-D back-track trajectories from Met Office Unified model providing latitude,

longitude, altitude, boundary layer depth, temperature were used to describe the met-

eorological processes. Between 30 and 1,000 equal probability trajectories arriving at

each arrival point between 15:00 and 15:15z each day from Met Office NAME model

were used in the present study. AWesely dry deposition velocity scheme was used but

no treatment was given for wet deposition. All model results were obtained using the

CRIv2 chemical mechanism.

The model provides a probability distribution for its output instead of a single number.

In the output provided, the uncertainties in all input parameters including meteorological

processes, emissions, chemical mechanism, photolysis rates and deposition velocities were

treated bymeans ofMonte Carlo sampling andmany thousands of model runs. Only those

model runs that produced ’acceptable’ ozone levels compared with observations were

actually used in policy analyses. In the Defra model intercomparison exercise the PTM

model provided 50%-percentile output for 15:00z for the rural Harwell, Oxfordshire site

based on only the ’acceptable’ model runs.

The PTM produced results for Harwell for July 2006.

1.2.9 WRF-Chem

The Weather Research and Forecasting/Chemistry model (WRF-Chem) is fully coupled

‘online’ model (Grell et al. 2005). The air quality component of the model is fully

consistent with the meteorological component; both components use the same transport

scheme (mass and scalar preserving), the same grid (horizontal and vertical components),

and the same physics schemes for subgrid-scale transport.

1.2.10 Model ensemble

The number of models considered in this report provides the opportunity to assess the

effect of using model ensembles. In model ensembles the simulation errors in different

models are assumed to be independent and the mean of the ensemble can be expected to

outperform individual models, thus providing an improved ‘best estimate’. By sampling

modelling uncertainties, ensembles of air quality models should provide an improved

basis for probabilistic prediction. Note however, members of a multi-model ensemble

share common systematic errors.

In this context a model ensemble refers to pooling all the model results in some way to

represent the average (or median) of all models. Ensemble modelling has been shown

many times to produce better results than any single model (Solazzo et al. 2012). In this

study a new model ensemble was produced by taking the mean of the hourly predictions

of O3 and other species by site for six of models i.e. not including the PTMorWRF-Chem

where full year data were not available. Although the mean was used in this study, it was

found that taking the median produced largely similar results.
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T .: Summary of model characteristics.

model type boundary meteorology chemistry grida emissionsb

conditions (km)

AEA-CMAQ Eulerian STOCHEM WRF3 CB05 12 NAEI/EMEP

AQUM Eulerian GEMS/MACC UM UKCA/RAQ 12 NAEI/EMEP

ENTEC

EMEP-4-UK Eulerian EMEP MSC-W model WRF3.1.1 EMEP MSC-W model 5 NAEI/EMEP

Hertfordshire-CMAQ Eulerian Geos-Chem WRF3.2.1 CB05 18 TNO

KCL-CMAQ Eulerian STOCHEM WRF3.1 CB05 9 NAEI/EMEP

NAME Lagrangian Mace Headc UM STOCHEM ≈10? NAEI/EMEP

ENTEC

OSRM Lagrangian STOCHEM with NAME (UM) STOCHEM 10 NAEI/EMEP

Mace Head ENTEC

PTM Lagrangian Mace Head? UM MCM3.1 ≈10? NAEI/EMEP

GEIA

WRF-Chem Eulerian ? ? ? ? ?

a For UK grid.
b ENTEC emissions are used for shipping.
c Based on analysis of extracted ‘baseline’ air-masses.

1.3 NOx and VOC emission assumptions

An important issue in the intercomparison are the assumptions related to NOx and VOC

emissions. The intercomparison exercise itself was based on model runs that had already

been produced by the modelling teams and there was no opportunity to ensure the use of

the same emission inventories. However, this is not necessarily a disadvantage because

each group essentially makes its own judgement as to what emissions are most appropriate

and carry out their own evaluations accordingly.

Nevertheless, knowing something about the emission assumptions can help with the

interpretation. Table 1.3 summarises the emissions of NOx and VOCs by model, split by

the UK and Europe. Note that some caution is needed when considering the European

emissions because each model uses different geographic definitions. For this reason, it is

also useful to consider the ratio of NOx to VOCs because a ratio will be less susceptible

to the precise definition of the geographic area.
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T .: Summary of emissions of NOx and VOCs for UK and Europe assumed

by the models.

VOC

model location NOx Anthropogenic Biogenic Total NOx/VOC

(kt yr−1) (kt yr−1) (kt yr−1) (kt yr−1) ratio

KCL-CMAQ UK 1590 1029 210 1239 1.28

AEA-CMAQ UK 1632 997 NA NA NA

EMEP-4-UK UK 1447 1019 30 1049 1.38

NAME UK 1633 1013 0 1013 1.61

AQUM UK 1459 926 93 1019 1.43

Hertfordshire-CMAQ UK 1600 927 313 1240 1.29

OSRM a UK 1582 939 NA NA NA

WRF-Chem a UK 1119 1036 NA NA NA

KCL-CMAQ Europeb 14352 11982 10864 22846 0.63

AEA-CMAQ Europe 16202 9909 18435 28344 0.57

EMEP-4-UK a Europe 21803 15341 NA NA NA

NAME Europe 18964 11143 0 11143 1.70

AQUM Europe 8439 4890 1122 6012 1.40

Hertfordshire-CMAQ Europe 16566 14802 27142 41944 0.39

OSRM a Europe 21019 11399 NA NA NA

WRF-Chem a Europe 7134 4420 NA NA NA

a Not including biogenic emissions.
b Note the area defined as Europe in the models varies. Also, Europe is assumed to include the UK.

Considering Table 1.3 for UK emissions of NOx, there is reasonable consistency

between the models. However, the WRF-Chem model assumes substantially less NOx

compared with the other models. A similar picture emerges for UK anthropogenic VOC

emissions where all models assume about 1000 kt yr−1. Where the models differ more

is in the assumption of biogenic emissions. These emissions are not necessarily easy to

extract from models because they can depend on the prevailing ambient conditions —

in particular surface temperature. Where specific estimates are available, they vary by a

large amount. For example for the UK, NAME assumes zero contribution from biogenic

VOCs and AQUM assumes only 93 kt yr−1, whereas Hertfordshire-CMAQ assumes

313 kt yr−1. The differences are also important for European emissions, where the ratio

of NOx/VOC can be considered. Hertfordshire-CMAQ tends to have a much lower

ratio (0.39) compared with the other models for which emissions are available e.g. KCL-

CMAQ (0.63), NAME (1.70) and AQUM (1.40). These differences in assumptions are

likely to affect how the models respond to emissions control and whether they consider

conditions to be NOx or VOC-sensitive.

1.4 Analysis approaches

The analysis has been conducted using R software (R Core Team 2013) and an R package

called openair (Carslaw and Ropkins 2012). The document itself embeds R code that

generates all the tables, plots and statistics ‘on the fly’ using the approach of Xie (Xie

2013a; Xie 2013b). This is a dynamic reporting approach where the document must be

compiled in order to be produced. All the code used to generate the plots, tables etc. is

given in Appendix C, which itself is generated directly from the report automatically.

There are several reasons for adopting this approach:

• All the analysis is entirely reproducible: every plot, table etc. can be reproduced

by anybody with access to the input data. This approach ensures that the process
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can be made as open and as transparent as possible as every aspect of the analysis

can be scrutinised by others.

• All the tools used to produce this report are free and open-source allowing anyone

to access them.

• The approach makes it much more efficient to take account of revised data e.g. if a

group finds a problem with the model results, new data are re-imported and the

document re-compiled and all the analysis is automatically regenerated.

• The model evaluation necessarily can only cover certain aspects of interest. By

making all the code available the modellers can develop the analysis further and

indeed use it for other situations.

Much of the analysis in this report uses variousmodel evaluation statistics to compare the

models with observations. No single statistical measure can encapsulate and characterise

differences between models and observations and for this reason several statistics have

been used based mostly on Derwent et al. (2010). These statistics broadly consider model

bias, error and correlation when compared with measurements. The summary statistics

are defined in Appendix B.

To help with interpretation of these statistics summary results have been ranked in a

simple way in summary tables throughout this report to show the best performing model

first and so on. The ranking is based on the overall performance for the Coefficient of

Efficiency, COE (Legates and McCabe 2012; Legates and McCabe Jr 1999). The COE is

a simple, good overall indicator of model performance and often other statistics follow

the order e.g. the correlation coefficient, r or the Root Mean Square Error, RMSE. It is

also easy to interpret — see Appendix B. In particular, a value of 1 indicates a perfect

model and a value of zero shows that the predictions are no better than taking the mean of

the observations.

2 Comparison against different O3 metrics

2.1 Boundary conditions — analysis of Mace Head data

For predictions of O3 concentrations, the boundary conditions used in each model will

likely be an important component affecting the overall performance of the models. This

section considers predictions at the Mace Head site, which will tend to be more strongly

influenced by model boundary conditions than at other sites in the mainland UK. It will

also be important to consider the specific assumptions used in each model to generate the

boundary conditions. The models each adopt different methods for setting the boundary

conditions for O3, which are summarised in Table 1.2. Given the large influence that

‘background’ O3 concentrations have on O3 predictions in general it is useful to compare

how the models differ in this respect.

Simply comparing the annualmeans shows that there are comparatively large differences

in the predictions of O3 at Mace Head. The annual means are considered more in

Section 2.2.1, but are considered briefly in this section forMace Head. The annual means

vary from 32.7 ppb (NAME) to 42.0 ppb (KCL-CMAQ); compared with a measured

value of 37 ppb. Other model predictions were EMEP-4-UK 36.7, Hertfordshire-CMAQ

38.2, OSRM 35.5 and AQUM 35.1 ppb.
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A better understanding of these differences can be gained if similar air masses are

clustered and then analysed. Of particular interest are ‘baseline’ air masses that will

dominate the western fringe of the UK. Two methods have been used to identify these

air masses: a cluster analysis of back trajectories and a more refined approach based on

careful filtering of air masses arriving at Mace Head as described by Ebinghaus et al.

(2011).3

F .: Mean back trajectories for the 4-cluster solution at Mace Head.

Clustering air masses can help group air mass trajectories that have similar geographic

origins and therefore more likely to have similar chemical histories. k-means clustering

has been undertaken at the Mace Head site to illustrate these issues. The 96-hour back

trajectories were calculated using the HYSPLIT model and were run at 3-hour intervals.

Figure 2.1 shows the mean trajectory path for the four clusters.4 These clusters can

broadly be described as Atlantic (cluster 3), Polar (cluster 4), south Atlantic (cluster 1)

and European continental (cluster 2).

The mean concentrations of O3 by model and cluster are summarised in Table 2.1,

where the measured values have been subtracted by cluster. Overall, out of the main

models evaluated, the EMEP-4-UK provides the most representative predictions. It is

now also clear the extent to which the models disagree e.g. for cluster 4 KCL-CMAQ

overestimates O3 concentrations by 6.3 ppb whereas the NAME model underestimates

by 5.1 ppb. These differences between the models will likely contribute to differences in

their performance for a range of O3 metrics. However, it is also clear from Table 2.1 that

the ensemble model provides the best overall agreement with the measurements.

Whether these different clusters represent different air-masses with different chemical

histories can be determined by considering some of the temporal components. For

example, it would be expected the seasonal variation in O3 concentration would be

different for baseline air compared with air-masses from a European Origin. Figure 2.2

shows the monthly variation in O3 concentration both for measured values and for

each model. The more refined air-mass allocation method has also been considered to

3The air-mass allocations were kindly provided by Professor Dick Derwent for this study.
4There are various methods for determining how many clusters should be used, but four was found to

nicely differentiate air masses with different O3 characteristics.
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T .: Summary mean O3 concentrations by model and cluster at Mace Head with measured

values subracted (ppb).

model C1 C2 C3 C4

MEASURED 0.0 0.0 0.0 0.0

AEA-CMAQ 6.3 2.0 2.0 2.6

AQUM -1.8 -1.4 -3.6 0.9

EMEP4UK -0.5 1.9 -1.5 -1.3

EMEP4UK-CRI -0.5 1.2 -1.6 -1.4

ENSEMBLE 1.6 -0.0 -1.5 0.2

Hert-CMAQ 3.3 3.3 -1.2 1.6

KCL-CMAQ 5.6 6.3 3.4 6.3

NAME -3.7 -1.2 -6.1 -5.1

OSRM 1.8 -11.3 -3.3 -3.9

understand whether different conclusions would be reached compared with the analysis

based on back trajectory clustering. The results by month are shown in the right panel of

Figure 2.2. Overall, for baseline air the results are very similar.

Considering the monthly variations, the clearest difference between the clusters for

measured concentrations is for cluster 2 for European continental air masses. These

trajectories tend to show a peak in O3 concentration during the summer months i.e. coin-

ciding with regional O3 production. It can be shown that clusters 3 and 4 (Atlantic/Polar

origin) show a clear peak in springtime. The most dominant cluster in is cluster 3 (At-

lantic), which accounts for around double the number of occurances comparedwith either

cluster 1 or 2. The monthly variation in O3 concentrations for cluster 3 is captured well

by EMEP-4-UK, KCL-CMAQ, Hertfordshire-CMAQ and NAME. The AEA-CMAQ

model tends to predict higher concentrations during the summertime and the NAME

model tends to underestimate O3 concentrations in general. The OSRMmodel on the

other hand peaks much earlier in the year (February) compared with the measurements.
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F .: Comparsion of O3 concentration seasonal components at Mace Head by trajectory

clustering and by allocation for baseline air masses.
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The diurnal variations (Figure 2.3) show that most models tend to capture the absolute

magnitude of O3 concentrations reasonably well as well as the lack of diurnal variation in

concentration for this marine site. Overall, the NAME model tends to underestimate O3

concentrations and the OSRM model significantly underestimates O3 concentrations for

European origin air-masses.

Again, for both the seasonal and diurnal variations in concentration for baseline and

European air masses, the ensemble model has the best overall agreement with measure-

ments.
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F .: Comparsion of O3 concentration diurnal components at Mace Head by trajectory

clustering and air mass allocation.

The model performance for specific trajectory clusters can also be calculated. For

example, for cluster 3 (Atlantic air masses), the model performance results shown below

show that the ensemble, EMEP-4-UK and the University of Herfordshire CMAQmodels

perform best. Some potentially important observations can be drawn from these results,

which could affect O3 predictions more generally across other sites. The KCL-CMAQ

and AEA-CMAQ models tend to show a positive bias compared with other models.

The NAME model shows a relatively strong negative bias. With respect to the correla-

tion with measurements, EMEP-4-UK, KCL-CMAQ, Hertfordshire-CMAQ have high

correlations whereas AEA-CMAQ, OSRM and NAME have much lower correlations.

There is also consistency in the model agreement between the trajectory clustering

approach and the air-mass allocation approach, as seen by comparing Table 2.2 and

Table 2.3.

Figure 2.4 shows the conditional quantile plot for cluster 3 results (Atlantic air masses),

which provides a more comprehensive analysis of model performance for Atlantic air mass

conditions. Figure 2.4 shows more clearly that the NAME model and the OSRM model

performance tends to be worse than the other models; the former being due to the under

prediction of O3. It is also clear that the AEA-CMAQ results cover a narrower range

than is seen in the observations. Again, the analysis reveals the good performance of the

ensemble model, shown by the narrow quantile intervals and the close correspondence of

the median (red) line with the perfect model (blue) line.
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T .: Summary statistics for Cluster 3 model performance.

data n FAC2 MB MGE NMB NMGE RMSE r COE

ENSEMBLE 1256 1.00 -1.46 3.53 -0.04 0.09 4.45 0.83 0.41

EMEP4UK 1248 1.00 -1.52 4.42 -0.04 0.11 5.71 0.74 0.27

Hert-CMAQ 1256 1.00 -1.16 4.49 -0.03 0.11 5.66 0.69 0.25

EMEP4UK-CRI 1250 1.00 -1.57 4.54 -0.04 0.12 5.88 0.73 0.25

KCL-CMAQ 1256 1.00 3.43 5.24 0.09 0.13 7.08 0.76 0.13

AEA-CMAQ 1252 0.99 2.03 5.74 0.05 0.15 7.29 0.35 0.05

AQUM 1256 1.00 -3.58 6.12 -0.09 0.16 7.09 0.82 -0.02

OSRM 1256 0.98 -3.29 7.15 -0.08 0.18 9.30 0.48 -0.19

NAME 1256 0.97 -6.07 8.42 -0.15 0.21 10.34 0.44 -0.40

T .: Summary statistics for ‘baseline air’ model performance using the more refined air-mass

allocation method.

data n FAC2 MB MGE NMB NMGE RMSE r COE

ENSEMBLE 3646 1.00 -1.72 3.11 -0.04 0.08 3.85 0.87 0.43

EMEP4UK 3613 1.00 -1.81 4.02 -0.04 0.10 5.12 0.78 0.27

EMEP4UK-CRI 3617 1.00 -1.88 4.09 -0.05 0.10 5.21 0.78 0.26

Hert-CMAQ 3645 1.00 -1.44 4.11 -0.04 0.10 5.19 0.71 0.25

KCL-CMAQ 3631 1.00 3.28 5.06 0.08 0.13 6.89 0.78 0.08

AEA-CMAQ 3624 1.00 1.04 5.33 0.03 0.13 6.77 0.29 0.03

AQUM 3646 1.00 -2.83 5.82 -0.07 0.14 6.76 0.83 -0.06

OSRM 3646 0.99 -3.58 6.55 -0.09 0.16 8.49 0.56 -0.19

NAME 3646 0.98 -6.55 8.55 -0.16 0.21 10.42 0.44 -0.56
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F .: Conditional quantile plot of O3 performance at the Mace Head site for cluster 3 back

trajectories (Atlantic air). The blue line shows the results for a perfect model. The red line shows

the median value of the predictions. The shading shows the predicted quantile intervals i.e. the

25/75th and the 10/90th. A perfect model would lie on the blue line and have a very narrow

spread. There is still some spread because even for a perfect model a specific quantile interval

will contain a range of values. However, for the number of bins used in this plot the spread will

be very narrow. Finally, the shaded histogram shows the counts of predicted values and the blue

histogram the counts of the observed values.
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Throughout all these comparisons, the ensemble model tended to perform consistently

better than the individual models, suggesting that pooling the model results gives a notable

improvement in model performance.

2.2 Model performance against commonly used metrics

In this section we compare the model predictions against some commonly used O3

metrics. The performance against these metrics is important because many relate to UK

or European limits which have a direct policy relevance. It is also important to determine

the spread in predictions through using different models, as this information provides a

good indication of the range in predictions that might reasonably be expected through

using different models. This information can also be used to determine whether the

models are sufficiently accurate to reliably predict the different O3 metrics. There are

numerous O3 metrics that have been used in previous studies. For example in the AQEG

(2009) report eight metrics are considered in Table 1-1. Many of the metrics are highly

correlated with one another as can be seen in Figure 2.5. The greatest contrast between

metrics is for the annual mean compared with the other metrics.

A summary of the key statistics by site for measured values is shown in Table 2.4.

T .: Summary measured O3 statistics by site for 2006. Concentration values are given in

µg m−3.
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F .: Correlation matrix showing how different O3 metrics are correlated. The statistics

are based on the all the sites considered in the current study.

It can be shown the analysis of hourly data over a full year by site (23 in total), that the

ensemble model produces the best results for 15 of the sites and the second best for 4.

However, the results for specific metrics differ as outlined below.

2.2.1 Annual mean O3 predictions

A useful way of summarising the performance of the models is to plot the bias (NMB)

against the error (NMGE), which is shown in Figure 2.6. Sometimes plots such as these

are used to show various model evaluation criteria e.g. NMBwithin±0.5 andNMGE<0.5

and are referred to as ‘soccer plots’ — so called because the lines that bound the criteria

resemble a goal mouth. However, in this study no specific criteria have been used against

which the models are judged.

In rural areas the model predictions tend to have a slight positive bias, with the NAME

and AQUMmodels performing best with low bias and error. While it might not be expec-

ted that large grid models would predict urban O3 concentrations well, the KCL-CMAQ

model predictions are almost as good as the rural predictions. As shown in Figure 2.6

there is a strong tendency for the models to show a positive bias in urban O3 predictions.

This behaviour is consistent with emissions of NO being mixed into volumes that are too

large, diluting them more than they should be and hence resulting in a positive bias in O3

concentration due to less depletion through the NO + O3 reaction. Indeed, the positive

bias in O3 concentration predictions in urban areas is reflected by a negative bias in NOx

predictions, shown later in Figure 3.1. Comparing Figure 2.6 with Figure 3.1 reveals

for example that the model with the most positive bias for O3 (Hertfordshire-CMAQ) is

also the model with most negative bias for urban NOx predictions – and the largest grid

square of 18 km. The situation for rural areas is more complex and there is no obvious

relationship between the O3 andNOx predictions. Nevertheless, urban O3 concentrations

are important with respect to exposure and concentrations can be expected to increase in

urban areas as NOx emissions decrease.
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F .: Comparison of annual mean predicted and measured O3 concentrations showing the

NMB against NMGE split by rural and urban sites.

The good performance of KCL-CMAQ in urban areas is worthy of note. As discussed

above, the performance for annual mean O3 and annual mean NOx is better than most

other models. There are many potential reasons for the differences between the models in

urban areas. However, the KCL-CMAQmodel uses a similar grid resolution to other mod-

els for the UK (9 km × 9 km) and vertical layers. Note, however, Hertfordshire-CMAQ

uses a grid size of 18 km (see Table 1.2), which may contribute to the higher positive

bias seen for this model. One potentially important difference with the KCL-CMAQ

model compared with other models is the use of updated NOx emission factors for road

vehicles based on vehicle emission remote sensing (Carslaw et al. 2011; Beevers et al.

2012). These updated emissions will likely result in higher NOx emissions in urban areas

compared with currently used emission factors used by other models.

Almost all models predict the annual mean O3 concentration within a factor of two

at all sites, as shown in Table 2.5. The performance by site type is shown in Table 2.5.

These results show that the models have very different performances in urban and rural

locations. It is now clear for example that there is a considerable positive bias for most

models (except KCL-CMAQ) in urban areas and the AEA-CMAQ model performs

relatively better in urban areas than rural areas.
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T .: Summary statistics for annual mean O3 performance split by site type.

site.type data n FAC2 MB MGE NMB NMGE RMSE r COE

rural NAME 15 1.00 -0.06 4.16 -0.00 0.07 5.60 0.78 0.42

rural OSRM 16 1.00 -1.67 5.10 -0.03 0.09 7.40 0.54 0.28

rural ENSEMBLE 16 1.00 2.49 5.22 0.04 0.09 7.14 0.65 0.26

rural AQUM 16 1.00 0.18 5.37 0.00 0.09 7.05 0.64 0.24

rural EMEP4UK-CRI 16 1.00 -1.68 5.60 -0.03 0.10 8.22 0.46 0.21

rural Hert-CMAQ 16 1.00 6.14 7.64 0.10 0.13 9.21 0.60 -0.08

rural KCL-CMAQ 16 1.00 5.93 7.82 0.10 0.13 9.99 0.64 -0.11

rural EMEP4UK 16 1.00 4.62 7.87 0.08 0.13 9.35 0.38 -0.12

rural AEA-CMAQ 16 0.94 2.16 8.23 0.04 0.14 11.65 0.61 -0.17

urban KCL-CMAQ 7 1.00 2.85 5.20 0.07 0.14 6.12 0.69 0.21

urban OSRM 7 1.00 6.72 6.80 0.18 0.18 9.00 0.60 -0.03

urban AEA-CMAQ 7 1.00 7.83 8.06 0.21 0.21 10.66 0.40 -0.23

urban NAME 2 1.00 7.85 7.85 0.23 0.23 7.86 1.00 -0.35

urban EMEP4UK-CRI 7 1.00 8.75 9.14 0.23 0.24 10.23 0.81 -0.39

urban ENSEMBLE 7 1.00 9.62 9.62 0.25 0.25 11.44 0.57 -0.46

urban AQUM 7 1.00 9.58 10.18 0.25 0.27 11.92 0.33 -0.55

urban EMEP4UK 7 1.00 14.41 14.41 0.38 0.38 15.71 0.56 -1.20

urban Hert-CMAQ 7 0.86 17.10 17.10 0.45 0.45 18.44 0.42 -1.60

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

0

25

50

75

A
H

B
IR

1

B
O

T

B
U

S
H

C
LL2

E
S

K

G
LA

Z

H
A

R

H
M

K
C

1

LB LH LN LO
N

6

M
A

N
3

M
A

N
4

M
H

R
O

C
H

S
IB

S
V

T
E

D

W
F

E
N

Y
W

site

O
3 

(µ
g 

m
−3

) 

type

● rural

urban

F .: Comparison of annual mean predicted and measured O3 concentrations. The solid

shape shows the measured value and the lines the range in model predictions. The results are also

shown by site type (urban/rural).

The annual mean results can be compared with the results by cluster that were sum-

marised in Section 2.1 to consider whether there is any relationship between the two

i.e. whether predictions at a site representative of boundary conditions more generally

affects annual mean concentrations. In Table 2.1 it was shown for example the NAME

model tended to underestimate O3 concentrations whereas the KCL-CMAQ model

tended to overestimate. Considering Table 2.5 it can be seen that the NAME model does

tend to have a much lower mean bias than most models; but certainly not the lowest.

However, a model such as Hertfordshire-CMAQ that predicted concentrations of O3 at

Mace Head well does tend to have a relative large positive bias for the annual mean O3

concentration at other sites. It is not clear therefore that the variation in predictions for

boundary-type conditions at Mace Head carries through to other sites or whether other

factors become more important e.g. deposition and treatment of atmospheric chemistry.

Indeed, the inclusion of the CRI version of the EMEP-4-UK model (which has very
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similar performance for Mace Head boundary conditions), differ markedly in their mean

bias at rural sites, highlighting the importance of the chemistry scheme used.

2.2.2 AOT40 predictions

The model performance statistics for the AOT40 (the accumulated dose of O3 over a

threshold of 40 ppb, 80 µg m−3) are shown in Table 2.6. The AOT40 was calculated

by extracting daylight hours in the growing season, defined as April to September. The

model performance for AOT40 predictions is rather mixed and the models predictions

cover a wide range of values. Nevertheless, all models predict most sites within a factor

of two.

T .: Summary statistics for AOT40 O3 performance.

site.type data n FAC2 MB MGE NMB NMGE RMSE r COE

rural AQUM 16 0.94 -66.81 2616.00 -0.01 0.29 3457.61 0.68 0.19

rural EMEP4UK 16 0.81 -1060.09 3095.26 -0.12 0.34 4246.95 0.46 0.04

rural NAME 15 0.73 -2818.70 3325.31 -0.31 0.37 4862.31 0.57 0.03

rural Hert-CMAQ 16 0.75 -3316.59 3856.55 -0.37 0.43 5631.79 0.19 -0.19

rural OSRM 16 0.62 -3271.46 3921.77 -0.36 0.43 5546.70 0.29 -0.21

rural EMEP4UK-CRI 16 0.81 -3550.85 3983.20 -0.39 0.44 5413.61 0.58 -0.23

rural KCL-CMAQ 16 0.75 1038.96 4164.59 0.11 0.46 5424.30 -0.00 -0.29

rural AEA-CMAQ 16 0.75 -2465.82 4294.17 -0.27 0.47 5606.53 0.09 -0.33

rural ENSEMBLE 16 0.50 -4528.13 4815.99 -0.50 0.53 6177.88 0.50 -0.49

urban EMEP4UK-CRI 7 1.00 -597.46 1923.37 -0.10 0.31 2415.97 0.85 0.36

urban KCL-CMAQ 7 0.86 425.88 2159.27 0.07 0.35 2510.30 0.78 0.28

urban Hert-CMAQ 7 0.71 295.16 2234.39 0.05 0.37 2658.47 0.76 0.26

urban AQUM 7 0.57 177.25 2512.71 0.03 0.41 2847.06 0.90 0.17

urban NAME 2 1.00 -627.59 1567.04 -0.14 0.34 1688.04 1.00 0.14

urban EMEP4UK 7 0.57 2177.17 2627.69 0.36 0.43 2995.11 0.86 0.13

urban ENSEMBLE 7 0.71 -2695.45 2873.26 -0.44 0.47 3828.40 0.91 0.05

urban AEA-CMAQ 7 0.71 -1425.44 3025.99 -0.23 0.49 3553.70 0.40 -0.00

urban OSRM 7 0.43 -3118.20 3232.93 -0.51 0.53 4127.00 0.77 -0.07

The results shown in Figure 2.8 show that the AQUMmodel tends to show very little

bias overall and has the lowest RMSE. There is a tendency for other models to show a

negative bias, with the exception of KCL-CMAQ.
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F .: Comparison of AOT40 predicted and measured values showing the NMB against

NMGE split by rural and urban sites.
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F .: Comparison of AOT40 predicted and measured O3 concentrations. The solid circle

shows the measured value and the lines the range in model predictions.

2.2.3 Higher concentration metrics

In this section consideration is given to model performance for metrics that consider

the higher concentrations of O3. These metrics tend to be more strongly influenced by

summertime regional photochemical episodes.

The first metric considered is the number of days with a daily maximum of running

8-hour means >100 µg m−3 (50 ppb). It can be shown from the observed O3 concentra-

tions across all sites that most of these days occur in July (292 site-days) and June (191

site-days). However, there are an appreciable number of days in April and May also (100

and 110 respectively, which will be affected by high baseline O3 concentrations). The

model performance summary is shown in Table 2.7.

T .: Summary statistics for number of days with a daily maximum of running 8-hour means

>100 µg m−3.

site.type data n FAC2 MB MGE NMB NMGE RMSE r COE

rural NAME 15 0.60 -8.33 15.13 -0.23 0.42 22.66 0.33 -0.06

rural EMEP4UK 16 0.75 0.25 14.62 0.01 0.41 18.71 0.40 -0.07

rural EMEP4UK-CRI 16 0.81 -12.31 14.69 -0.35 0.41 21.23 0.57 -0.08

rural OSRM 16 0.75 3.06 16.19 0.09 0.46 21.73 0.22 -0.19

rural AQUM 16 0.81 11.75 17.50 0.33 0.49 22.43 0.43 -0.29

rural AEA-CMAQ 16 0.69 -15.62 18.25 -0.44 0.51 25.35 0.23 -0.34

rural Hert-CMAQ 16 0.69 -18.44 19.19 -0.52 0.54 26.61 0.36 -0.41

rural ENSEMBLE 16 0.38 -21.12 21.38 -0.60 0.60 27.34 0.65 -0.57

rural KCL-CMAQ 16 0.56 24.00 29.75 0.68 0.84 36.67 0.04 -1.18

urban EMEP4UK-CRI 7 1.00 -0.71 5.29 -0.03 0.21 6.15 0.83 0.45

urban OSRM 7 0.86 -5.14 6.57 -0.21 0.27 8.65 0.78 0.32

urban AQUM 7 1.00 3.71 6.86 0.15 0.28 8.02 0.94 0.29

urban Hert-CMAQ 7 1.00 -0.86 6.86 -0.03 0.28 8.16 0.69 0.29

urban ENSEMBLE 7 1.00 -9.14 9.14 -0.37 0.37 11.43 0.97 0.05

urban KCL-CMAQ 7 0.86 7.71 9.43 0.31 0.38 10.93 0.72 0.03

urban EMEP4UK 7 0.57 10.29 10.29 0.42 0.42 12.05 0.84 -0.06

urban AEA-CMAQ 7 0.57 -8.43 11.29 -0.34 0.46 13.57 0.16 -0.17

urban NAME 2 1.00 -6.00 6.00 -0.32 0.32 7.21 1.00 -0.20

The model evaluation statistics show that the models do less well in predicting the

number of days where the maximum rolling 8-hour mean is >100 µg m−3 compared
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with the annual mean. There is no consistent positive or negative bias in the models

results: some models tend to over predict while other under predict, as shown in Table 2.7

and Figure 2.10. Predicting this particular metric is difficult for two reasons. First, all

models are expected to find it more difficult to predict a short-term mean concentration

compared with a longer-term mean, and second, the statistic is a threshold statistic. The

latter point is important because if concentrations are close to the threshold, then only

a small error in the prediction can have a large effect on the estimate of the number of

days where the concentration is greater than the threshold. For this reason, the number

of days where the maximum rolling 8-hour mean is >100 µg m−3 is a challenging statistic

for the models to predict — but nevertheless and important one.
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F .: Comparison of number of days with a daily maximum of running 8-hour means

>100 µg m−3 predicted and measured values showing the NMB against NMGE split by rural and

urban sites.

The range in predictions across the different models and sites is large at about ±25 days

— compared with a typical observed value of about 30 days. It is also interesting to note

that unlike many of the other results in this report, the ensemble model does poorly for the

number of days where the maximum rolling 8-hour mean is >100 µg m−3. It appears that

the reason is that the models predict the timing of the peaks differently and developing

an ensemble model of the mean concentration at any one time tends to lower the overall

mean values. Indeed, the same is also true of other high concentration metrics including

the maximum daily means and the AOT40.

The models produce a wide range of estimates of the number of days metric, which is

best shown in Figure 2.11. In general, most models tend to underestimate the number of

days where the metric is exceeded. Furthermore, the range in estimates is large (typically

around 40 days, which is similar to the magnitude of the exceedances). The Taylor

Diagram in Figure A.2 captures the model performance well in that the correlation with

measurements is low (maximum r≈0.4) and the RMS error is high.

Given the importance of the exceedance day metric, these findings are important and

suggest that all models struggle to produce reliable estimates of the number of exceedance

days.
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F .: Comparison of the number of days with a daily maximum of running 8-hour means

O3 concentration >100 µg m−3. The solid shape shows the measured value and the lines the

range in model predictions.
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F .: Comparison of the number of days with a daily maximum of running 8-hour means

O3 concentration >100 µg m−3 for the EMEP-4-UK model. The solid circle shows the predicted

value and the lines the range in model predictions from a ±10% uncertainty in ozone predictions.

Threshold statistics can be very challenging for models to predict well; particularly

when values are close to the threshold. The apparently large differences between the

models can caused by relatively small changes in concentration. It is important therefore

to understand how sensitive the models are in this respect. As an example, the results from

the EMEP-4-UK model have been analysed to show how much of a difference relatively

small changes in concentration makes to the number of days where the maximum rolling

8-hour mean is >100 µg m−3.

The results are shown in Figure 2.12 and highlight the extent to which the number of

days where the maximum rolling 8-hour mean is >100 µg m−3 is sensitive to a ±10%
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change in base case O3 prediction.
5 Figure 2.12 shows very clearly that for a relatively

small change in O3 concentration, the effect on the statistic is large. For example, at

Harwell, the estimate varies from20 to 78 days. Indeed, the results in the±10% sensitivity

test produce similar ranges to the spread across different models as shown in Figure 2.11.

Care should be exercised when comparing model predictions for threshold-type statistics,

even if they are important health-based standards or limits.
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F .: Comparison of daily maximum O3 predicted and measured values showing the

NMB against NMGE split by rural and urban sites.

Also considered is a metric that captures only summertime episode conditions. While

the peak hour metric would correspond to these conditions, there is more uncertainty

introduced by considering only one hour e.g. due to measurement uncertainty. Therefore

the maximum of the daily means has been considered. All models predict the maximum

daily mean within a factor of two at all sites as shown in Figure 2.13, but tend to un-

derestimate the concentration (Table 2.8). Overall, the models are able to predict the

maximum daily mean better than the exceedance days metric discussed previously — at

least in terms of estimating the absolute value. However, the correlation with measured

values is low (r<0.3) and the RMSE error is high, which indicates the models are not able

to account very well for the variation between sites. Typically the range in predictions of

the maximum daily mean is about ±25 µg m−3 for a mean values of 129 µg m−3.

It is also interesting to note that there is not a consistent order of model performance

for the exceedance days and maximum daily metrics: models that tend to do better with

one do not necessarily do better with the other. This observation makes it difficult to

identify particular models that are better at predicting the higher concentrations of O3.

5Note that the simple assumption has been made of increasing the O3 concentration for all hours and sites

by ±10%.
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T .: Summary statistics for the maximum daily mean O3 concentration.

site.type data n FAC2 MB MGE NMB NMGE RMSE r COE

rural AQUM 16 1.00 -2.58 18.88 -0.02 0.14 22.46 0.35 0.08

rural OSRM 16 1.00 -3.10 21.27 -0.02 0.16 26.08 -0.07 -0.04

rural EMEP4UK 16 1.00 -18.23 23.57 -0.13 0.17 31.42 -0.11 -0.15

rural KCL-CMAQ 16 1.00 -3.29 23.88 -0.02 0.18 29.35 -0.08 -0.16

rural NAME 15 1.00 -28.10 30.18 -0.21 0.22 37.42 0.13 -0.41

rural Hert-CMAQ 16 1.00 -31.40 32.07 -0.23 0.24 39.55 0.04 -0.56

rural AEA-CMAQ 16 1.00 -34.04 34.04 -0.25 0.25 41.89 0.23 -0.66

rural EMEP4UK-CRI 16 1.00 -32.66 34.19 -0.24 0.25 42.01 -0.04 -0.67

rural ENSEMBLE 16 1.00 -34.64 34.64 -0.26 0.26 41.45 0.27 -0.69

urban EMEP4UK 7 1.00 0.93 6.92 0.01 0.06 8.12 0.75 0.28

urban Hert-CMAQ 7 1.00 -4.82 8.14 -0.04 0.07 12.18 0.27 0.15

urban OSRM 7 1.00 2.10 10.34 0.02 0.09 12.07 0.32 -0.08

urban AQUM 7 1.00 11.88 14.92 0.10 0.13 20.01 -0.23 -0.56

urban NAME 2 1.00 -21.13 21.13 -0.18 0.18 22.04 1.00 -0.56

urban KCL-CMAQ 7 1.00 -15.12 15.12 -0.13 0.13 17.15 0.68 -0.58

urban ENSEMBLE 7 1.00 -20.57 20.57 -0.18 0.18 22.72 0.48 -1.15

urban EMEP4UK-CRI 7 1.00 -22.34 22.34 -0.19 0.19 23.70 0.75 -1.34

urban AEA-CMAQ 7 1.00 -22.34 23.42 -0.19 0.20 27.24 -0.45 -1.45
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F .: Comparison of maximum daily O3 concentration. The solid circle shows the

measured value and the lines the range in model predictions.

2.2.4 Comparison of O3 predictions in relation to other variables

Predictions of other species such as NOx and NO2 have also been made by each model

together with predictions of meteorological variables, which are considered more in

Section 6. The predictions of these other variables can often provide clues as to some of

the reasonswhymodel predictions behave as they do. Predictions at theNorthKensington

site are considered shown in Figure 2.15 as an example. Considering wind speed, most

models (except AEA-CMAQ) tend to underestimate wind speed to some extent. There

is however no obvious effect of wind speed predictions on O3 concentrations e.g. the

generally worsening performance of the models for high concentrations of O3 is not

associated with a gross over or under-prediction in wind speed. Although the plot is not

shown, the model performance for ambient temperature is much better than wind speed

and again there is no indication that inadequate temperature predictions are associated
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with poor model performance with respect to O3.

The performance of NOx predictions is more mixed. There is a tendency for the models

to under-predict NOx across the range of O3. The exception is KCL-CMAQ which

tends to over-predict NOx for lower O3. The WRF-Chem results (for June/July) on the

other hand tend to over-predict NOx to a high degree at low O3 and in this case there is a

tendency for O3 to be underestimated when NOx is overestimated.

predicted value 

20

40

60

80

100

0

500

1000

1500

2000
AEA−CMAQ 

20

40

60

80

100

0

500

1000

1500

2000
AQUM 

20

40

60

80

100

0

500

1000

1500

2000
EMEP4UK 

20

40

60

80

100

0

500

1000

1500

2000
Hert−CMAQ 

20

40

60

80

100

0

500

1000

1500

2000
KCL−CMAQ 

20 40 60 80 100

20

40

60

80

100

0

500

1000

1500

2000
WRF−Chem 

sa
m

pl
e 

si
ze

 fo
r 

hi
st

og
ra

m
s

25/75th percentile
10/90th percentile
median
perfect model

ob
se

rv
ed

 v
al

ue
 

predicted value 

st
at

is
tic

 

−0.5

0.0

0.5

1.0

NMB 

A
E

A
−

C
M

A
Q

 

−0.5

0.0

0.5

1.0

NMB 

A
Q

U
M

 

−0.5

0.0

0.5

1.0

NMB 

E
M

E
P

4U
K

 
−0.5

0.0

0.5

1.0

NMB 

H
er

t−
C

M
A

Q
 

−0.5

0.0

0.5

1.0

NMB 

K
C

L−
C

M
A

Q
 

−0.5

0.0

0.5

1.0

20 40 60 80 100

NMB 

W
R

F
−

C
he

m
 

variable 
NOx
wind speed 

F .: Conditional quantiles for O3 concentrations at the North Kensington site. The plot

on the right shows how well each model predicts concentrations of NOx and wind speed (based

on predictions at the Heathrow site). The statistic shown in the Normalised Mean Bias.

It is also useful to consider the performance of the models with respect to air mass

origin to determine whether there are certain air mass origins that are associated with

poor model performance and the extent to which the models agree with one another. As

an example, Figure 2.16 shows six back trajectory clusters for the Lullington Heath site

calculated using 96-hour HYSPLIT back trajectories. These trajectories provide a wide

range of differing source origins from which air masses arrived from.

Figure 2.17 shows several useful results. The plots on the left show conditional quantiles

of O3 concentration by model, together with measured values. The models in general

do not cover the full range of observed values i.e. there is an absence of higher O3

concentrations. The plot on the right shows the proportion of the O3 concentration

intervals split by trajectory cluster calculated in Figure 2.16. There are several interesting

features shown in this figure. First, it is clear from the measured concentrations of O3

that there are higher O3 concentrations than predicted by most models as already noted.

Second, these higher O3 concentrations (>50 ppb) are nearly all associated with cluster

1 i.e. from continental Europe and under generally anti-cyclonic conditions.



2 Comparison against different O3 metrics 34

In general, cluster 1 is associated with low (wintertime) and high (summertime) O3

concentrations and most models capture this behaviour. However, for CMAQ-AEA the

highest predicted O3 concentrations appear to be due to air masses from the Atlantic

(cluster 5), suggesting that it misses some of the important high concentration conditions

when air masses are from Europe. For the AQUM, Hertfordshire-CMAQ, KCL-CMAQ

and EMEP-4-UK models, high O3 concentrations do derive from cluster 1 air masses,

but most other models show a more mixed contribution. For example, while OSRM does

predict high O3 concentrations most of these come from air masses from the south-west

(cluster 3).

Clearly, the principal deficiency of most models is in their ability to capture high

concentrations of O3 when air masses arrive from continental Europe under anticyc-

lonic conditions. These are important conditions with respect to O3 concentrations and

dominate the high-O3 metric statistics.

F .: Back trajectory clusters for the Lullington Heath site for 2006 data.
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F .: Conditional quantiles for O3 concentrations at the Lullington Heath site. The plot

on the right shows the origin of the air mass clusters as a proportion.

2.2.5 New air quality index

This section briefly considers the performance of the models against the Defra new daily

air quality index. More details concerning the index can be found at http://uk-air.

defra.gov.uk/air-pollution/daqi. For O3 the air quality index is shown in Table 2.9,

which assumes 8-hour rolling mean concentrations.

Perhaps the most relevant statistic to compare the models against is the mean bias and

how that changes through the air quality indexes. Figure 2.18 shows the performance

of all the models for June and July 2006. This Figure shows very clearly the general

tendency of the models to increasingly underestimate O3 concentrations as the air quality

index increases i.e. as the concentration of O3 increases itself. The NormalisedMean Bias

http://uk-air.defra.gov.uk/air-pollution/daqi
http://uk-air.defra.gov.uk/air-pollution/daqi
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T .: The new Defra daily air quality index.

Band Description O3 range (µg m
−3)

1 Low 0–33

2 Low 34–65

3 Low 66–99

4 Moderate 100–120

5 Moderate 121–140

6 Moderate 141–159

7 High 160–187

8 High 188—213

9 High 214–239

10 Very High 240 or more
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F .: Comparison of model performance (mean bias, MB and normalised mean bias,

NMB) against the new air quality index for June and July 2006. The index on the x-axis is the

index based on observations.

(NMB) plot (right) shows that for the highest O3 index the models typically underestimate

O3 concentrations by a factor of two. However, there is a large range inmodel performance

as the air quality index increases. For the lowest bands (1 and 2) all models tend to

overestimate concentrations, but as the bands increase throughmoderate to high all models

increasingly underestimate O3 concentrations. The best performing model is AQUM,

followed by OSRM and KCL-CMAQ. TheWRF-Chem model has approximately twice

the (negative) bias compared with AQUM at higher air quality indexes and thus tends to

underestimate O3 concentrations by a considerable margin.

The underestimate of O3 for the high daily indexes can also be expressed in terms of

the index itself. For example, when the observed O3 concentration is at level 7 (High)

the corresponding modelled O3 is typically at level 4, the lowest level on the moderate

scale (on average). However, there are large differences between the models. For the

same conditions, AQUM for example would estimate the index to be 5 (middle of the

moderate range), whereas WRF-Chem would be 3 — clearly considerably less than a

value of 7 for observed O3 concentrations.
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It is worth noting that the index is primarily for air quality forecasting purposes but is

nevertheless relevant to this report. Indeed, if the same models were used in ‘forecast

mode’ and being driven not be historical meteorological data but forecast data, then in

might be expected that model performance would be worse than is shown in this section.

However, a worse performance might affect some statistics more than others. It might for

example be expected to increase the RMSE but not necessarily affect the mean bias.

A common approach to evaluate the quality of forecast predictions is to consider the

categorical prediction e.g. was a ‘high’ prediction forecast by the model? In this case the

response is yes or no. There are various methods for evaluating the quality of predictions

for these cases and Stephenson (2000) explores approaches based on the odds ratio.

Specifically, the odds ratio skill score is used as a measure of the predictive performance

of models for these situations i.e. where there is a yes/no, TRUE/FALSE outcome. As

mentioned above, these issues are more relevant to models used for forecasting where

the policy maker would like to know whether to issue a warning that a certain level of

concentration is likely to be exceeded. Indeed the development of the new daily air

quality index by COMEAP used these approaches (COMEAP 2011).

Note that the forecasting performance of some of these models will be considered

specifically as a separate exercise during 2013.

3 NOx and NO2 comparsions

3.1 Concentration comparisons

In this section the model predictions of NOx and NO2 are compared with measure-

ments and with each other. The analysis separately considers urban sites (7 urban

background/suburban sites in London, Manchester and Birmingham) and rural back-

ground sites (15 sites around the UK). Concentrations of NOx at urban background sites

will be dominated by urban emissions themselves and the comparisons to a large extent

provide a test of how well the urban emissions are specified in the models. Given the

close coupling of NO-NO2-O3 concentrations, good predictions of NOx ought to help

improve O3 predictions.

For NOx the model performance statistics are shown below for urban and then rural

sites. It is apparent from these statistics that there is a wide range of model performance

when it comes to NOx predictions in urban areas. The most notable difference between

the models is the mean bias: several models significantly under-predict urban NOx

concentrations (see the MB and NMB in the table below). In particular, NAME, AQUM,

Hertfordshire-CMAQ and EMEP-4-UK all show large under predictions of NOx. On

the other hand, the KCL-CMAQ shows very little bias.

The bias and error for NOx can be seen more clearly in Figure 3.1. This Figure shows

the general negative bias in urban areas and positive bias in rural areas. Not all models

show a negative bias in urban areas however. For example, KCL-CMAQ shows very little

bias for NOx; similar to the findings for O3 considered previously. However, as discussed

previously, regional scale models would not necessarily be expected to predict urban NOx

concentrations well and a negative bias would be expected. In rural areas most models

tend to show a positive bias, which is relatively large for AQUM andWRF-Chem. The

results for NO2 (not shown) are similar to NOx with respect to bias.

It should be noted that at rural sites measured concentrations of NO2 might be expected

to overestimate actual NO2 concentrations due to the use of the chemiluminescence
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technique with molybdenum converters (as used in the AURN). This overestimate will

depend on the concentrations of interfering species etc. (AQEG 2004; Dunlea et al.

2007). However, as noted above the models tend to show a positive bias at rural sites and

accounting for these interfering species would tend to make the agreement worse, not

better. Throughout a whole year however these effects are likely negligible compared

with the modelling uncertainties.

The statistics shown in Table 3.1 and Table 3.2 are based on hourly values, whereas

Figure 3.1 is based on annual mean data. The model statistics can vary considerably

depending on whether the data are annual or hourly. The choice between the two time

averages depends on the aim of the analysis. For example, for annual mean concentrations

of NO2 for which there is a Limit Value it is useful to consider annual mean statistics.

Care is needed however when interpreting such results.

T .: Summary statistics for urban NOx concentrations based on hourly data.

data n FAC2 MB MGE NMB NMGE RMSE r COE

ENSEMBLE 58060 0.70 -8.24 15.67 -0.26 0.50 32.20 0.62 0.34

KCL-CMAQ 58060 0.65 0.89 17.45 0.03 0.56 31.46 0.61 0.27

EMEP4UK-CRI 57854 0.62 -10.51 17.74 -0.33 0.56 34.38 0.56 0.25

EMEP4UK 57829 0.59 -12.22 18.25 -0.39 0.58 34.89 0.55 0.23

AQUM 58060 0.51 -15.71 18.95 -0.50 0.60 36.53 0.58 0.20

Hert-CMAQ 58053 0.50 -17.31 19.45 -0.55 0.62 37.85 0.55 0.18

AEA-CMAQ 57906 0.58 -6.94 19.72 -0.22 0.63 37.21 0.41 0.17

NAME 15806 0.60 -18.20 24.70 -0.40 0.55 46.50 0.46 0.15

OSRM 58060 0.64 1.84 21.43 0.06 0.68 45.84 0.38 0.10

WRF-Chem 6893 0.50 3.21 15.69 0.16 0.78 22.58 0.31 -0.21

For the rural sites there is no obvious bias towards under prediction of NOx concentra-

tions. Indeed, two of the models (AQUM and WRF-Chem) show considerable positive

bias — see Figure 3.4.

T .: Summary statistics for rural NOx concentrations based on hourly data.

data n FAC2 MB MGE NMB NMGE RMSE r COE

Hert-CMAQ 81683 0.55 -1.04 4.23 -0.14 0.59 10.64 0.57 0.30

EMEP4UK 81420 0.52 -0.83 4.54 -0.12 0.63 10.49 0.60 0.25

EMEP4UK-CRI 81454 0.54 -0.09 4.67 -0.01 0.65 10.69 0.60 0.23

ENSEMBLE 81692 0.54 2.50 5.41 0.35 0.76 10.99 0.61 0.11

NAME 81692 0.49 2.46 5.99 0.34 0.84 12.04 0.53 0.01

AQUM 81692 0.49 2.77 6.22 0.39 0.87 13.01 0.54 -0.02

KCL-CMAQ 81692 0.48 3.43 6.46 0.48 0.90 12.58 0.57 -0.06

OSRM 81692 0.47 2.53 7.28 0.35 1.02 16.99 0.39 -0.20

AEA-CMAQ 81514 0.41 8.17 11.34 1.14 1.58 24.61 0.37 -0.87

WRF-Chem 9012 0.34 8.06 9.82 1.57 1.91 16.95 0.42 -1.56

The performance with respect to NOx concentrations is revealed by considering the

temporal components. Figure 3.2 very clearly shows how well the models predict urban

(North Kensington) NOx concentrations — and there is a wide range in model per-

formance. On this basis the KCL-CMAQ and Hertfordshire-CMAQ do well both in

terms of the absolute magnitude of NOx and its diurnal variation. Most models capture

the seasonal variation in NOx concentrations as shown in Figure 3.3, but many models

underestimate the magnitude of NOx during the winter months.
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F .: Comparison of annual mean predicted and measured NOx concentrations showing

the NMB against NMGE split by rural and urban sites.
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3 NOx and NO2 comparsions 40

month

N
O

x 
(p

pb
) −20

0

20

40

60

AEA−CMAQ 

J F M A M J J A S O N D

AQUM EMEP4UK 

J F M A M J J A S O N D

EMEP4UK−CRI ENSEMBLE 

J F M A M J J A S O N D

Hert−CMAQ KCL−CMAQ 

J F M A M J J A S O N D

OSRM 

−20

0

20

40

60

WRF−Chem 

NOx.obs NOx.mod NOx.mod − NOx.obs 

F .: Seasonal variation in NOx concentrations predicted at the North Kensington site.

For the rural sites (Harwell in this case) there is no obvious bias towards under prediction

of NOx concentrations. Indeed, two of the models (AEA-CMAQ and WRF-Chem)

show considerable positive bias.
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F .: Diurnal variation in NOx concentrations predicted at Harwell.

The results for NO2 are summarised in Table 3.3 (urban) and Table 3.4 (rural).
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F .: Seasonal variation in NOx concentrations predicted at Harwell.

T .: Summary statistics for urban NO2 concentrations.

data n FAC2 MB MGE NMB NMGE RMSE r COE

ENSEMBLE 58060 0.77 -2.85 6.88 -0.16 0.38 9.58 0.70 0.33

EMEP4UK-CRI 57854 0.68 -4.15 8.19 -0.23 0.45 11.32 0.59 0.21

EMEP4UK 57829 0.64 -4.91 8.58 -0.27 0.47 11.83 0.57 0.17

KCL-CMAQ 58060 0.72 3.97 8.59 0.22 0.47 11.23 0.65 0.17

Hert-CMAQ 58053 0.59 -6.87 8.78 -0.37 0.48 12.17 0.62 0.15

AEA-CMAQ 57906 0.67 -0.23 8.93 -0.01 0.49 12.27 0.54 0.13

AQUM 58060 0.58 -6.49 9.01 -0.35 0.49 12.33 0.58 0.13

OSRM 58060 0.65 -3.60 9.18 -0.20 0.50 13.88 0.44 0.11

WRF-Chem 6893 0.57 -0.17 9.30 -0.01 0.60 12.61 0.38 0.00

NAME 15806 0.69 -3.32 11.27 -0.13 0.45 15.01 0.50 -0.07

T .: Summary statistics for rural NO2 concentrations.

data n FAC2 MB MGE NMB NMGE RMSE r COE

Hert-CMAQ 81683 0.56 0.33 2.91 0.06 0.57 4.57 0.70 0.29

EMEP4UK 81420 0.54 0.11 3.16 0.02 0.62 5.25 0.65 0.23

EMEP4UK-CRI 81454 0.55 0.59 3.21 0.12 0.63 5.28 0.66 0.22

ENSEMBLE 81692 0.56 2.37 3.58 0.46 0.70 5.29 0.74 0.13

OSRM 81692 0.49 0.94 4.05 0.18 0.79 6.62 0.47 0.02

AQUM 81692 0.51 2.39 4.12 0.47 0.80 6.47 0.63 -0.00

NAME 81692 0.47 3.33 4.92 0.65 0.96 8.26 0.62 -0.19

KCL-CMAQ 81692 0.47 3.74 4.97 0.73 0.97 7.66 0.69 -0.21

AEA-CMAQ 81514 0.42 5.79 7.10 1.13 1.38 11.73 0.57 -0.72

WRF-Chem 9012 0.34 5.17 6.53 1.28 1.62 9.67 0.43 -1.05



4 Effect of precursor emission changes 42

3.2 Effect of model grid size and emission

The models have been shown to have a range of biases when predicting NOx and O3. In

urban areas in particular there could be important effects due to the model grid size used.

Grid size effects also include the locations of the grids themselves e.g. two models may

use the same grid size but a different coordinate system which could result in a monitoring

site being located in different areas of emission. To investigate this issue in more detail

each group was asked to supply the emissions in each grid square corresponding to the

location of each monitoring site. Plotting the mean bias in NOx against model grid size

(left plot of Figure 3.6) does show there is a general tendency for models with larger grid

cells to have a negative bias for urban NOx predictions. However, the grid size is not the

only factor that will affect the mean bias. Also important is associated NOx emission in

each grid cell. If the mean bias is plotted against the NOx emission expressed as t km−2

(right plot of Figure 3.6) then a much clearer relationship emerges. The right-hand plot

shown in Figure 3.6 therefore encapsulates both grid size and emission effects.
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F .: Left: effect of grid square dimension of NOx on the mean bias of NOx concentration

for urban sites, right: effect of grid square emission of NOx on the mean bias of NOx concentration

for urban sites.

It is apparent therefore that the mean bias in urban NOx predictions is related both to

the gird size assumed and the NOx emission assumptions. The best performing model

(KCL-CMAQ) has both a relatively small grid size (9 km) and a relatively high emission

of NOx. Comparing the mean urban NOx emissions in t km−2 yields the following:

KCL-CMAQ = 57.0, Hertfordshire-CMAQ = 30.1, EMEP-4-UK = 45.6, AQUM = 30.9

and AEA-CMAQ = 45.2.

The higher urban emissions of NOx assumed in KCL-CMAQ are likely (in part) due

to the adoption of more recent vehicle emission data based on recent vehicle emission

remote sensing, which assume higher emissions of NOx compared with previous data

particularly for diesel vehicles (Beevers et al. 2012; Carslaw et al. 2011).

4 Effect of precursor emission changes

4.1 Introduction

This section considers how the models respond to changes in precursor emissions. Con-

sideration has been given to the full range of sites and all hours of 2006. While the amount
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of processing required is large, this approach has the benefit of being able to understand

the impacts the scenarios have on a full year of data and hence various O3 metrics that

require a full year of data. Later in Section 5 there is a focus on considering one month

(July) in more depth where concentrations of O3 are at their highest.

The following scenarios were requested to be run by each model group referred to as

S1 to S4:

S1 Reduce total anthropogenic NOx and VOC by 30% across the UK + Europe

S2 Reduce total anthropogenic NOx and VOC by 30% across the UK only

S3 Reduce anthropogenic NOx by 30% across UK + Europe

S4 Reduce anthropogenic VOC by 30% across UK + Europe

Note that UK is defined as sources in the NAEI and therefore will include coastal

shipping emissions. These scenarios were considered to understand how the models

respond to changes, rather than representing scenarios of direct policy relevance.

Because there are no observations against which the results can be compared, the

comparisons focus on the differences between models. However, additional information

was requested relating to various indicator species, which will also be considered later

in this section. In addition, it is useful to understand the ranges in predicted changes in

O3 and other species across the different models and whether there is broad consistency

in the results. In particular it is useful to know for key O3 metrics the effect of different

emissions reduction scenarios.

There are a very large number of model-scenario-receptor combinations and more

detail can be provided where necessary. However, only a selection of comparisons is

shown here focusing on the annual mean and metrics for higher concentrations of O3.

4.2 Effect of scenarios on annual mean O3 concentrations

The effect of the scenarios on the annual mean O3 concentration is summarised across all

receptors in Table 4.1. The broad response of the models is similar across the scenarios in

that S1 to S3 (which reduce NOx and VOCs in the UK/Europe or reduce only NOx;

S3) result in increased O3 concentrations. The reduction of only VOCs (S4) reduces the

annual mean O3 concentration. There is however, a large variation by model shown in

Table 4.1. For example for S1 (reducing NOx and VOCs in Europe) the models vary

from increasing O3 from 0.5 µg m−3 (EMEP4UK) to 3.7 µg m−3 (AEA-CMAQ), for rural

areas. For urban areas there is more of a difference between the models: from 3.8 µg m−3

(EMEP-4-UK) to 8.0 µg m−3 (KCL-CMAQ). The largest increases in O3 for scenarios S1

to S3 is in urban locations, which is expected because reductions in NOx concentration

will directly affect the NO + O3 reaction. The extent to which the models predict an

increase in urban areas will also depend on how well the models predict urban NOx in the

first place, which is described in Section 3. For example, the KCL-CMAQ model tends

to predict higher urban NOx concentrations than the other models and consequently

tends to predict greater increases in O3 concentration for scenarios that reduce NOx

compared with other models.

In Figure 4.1 and the following plots, the results are split by site type (rural or urban) and

a box and whisker plot is shown to highlight the distribution of changes in O3 (Δ𝑂3 with

a negative value correponding to a reduction in O3 concentration). The box and whisker
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T .: Summary changes in annual mean O3 concentrations across all receptors by model for

2006 for annual mean concentrations (µg m−3).

site.type data S1 S2 S3 S4

rural AEA-CMAQ 3.7 2.8 4.1 -0.1

rural AQUM 2.9 2.5 3.4 -0.5

rural EMEP4UK 0.5 1.2 1.9 -1.5

rural ENSEMBLE 2.4 2.3 3.1 -0.7

rural Hert-CMAQ 2.5 2.1 2.6 -0.2

rural KCL-CMAQ 3.4 3.5 4.0 -0.6

rural NAME 1.7 2.1 3.2 -1.5

rural OSRM 1.8 2.1 2.6 -0.7

urban AEA-CMAQ 6.8 6.1 7.3 -0.2

urban AQUM 5.5 5.2 6.2 -0.6

urban EMEP4UK 3.8 4.6 5.3 -1.7

urban ENSEMBLE 5.7 5.8 6.5 -0.7

urban Hert-CMAQ 5.4 5.3 5.7 -0.3

urban KCL-CMAQ 8.0 8.3 8.9 -0.8

urban NAME 6.4 7.1 8.7 -2.2

urban OSRM 4.6 5.0 5.4 -0.7
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F .: Model predictions of the change in annual mean O3 from Scenario 1. Negative values

show a reduction (improvement) in O3 concentration. The box and whisker plots help to show

where the distribution is centred.

plot is useful for showing the median response (shown by the horizontal line) and the 25

to 75th percentiles (shown by the box). In addition, the sites have been ordered in terms

of their response to a change in O3 from greatest reduction to least reduction/greatest

increase, which can be thought of as ‘best’ to ‘worst’ in terms of O3 concentration change.

The benefit of plotting the data in this way is that it is easier to spot patterns in the data

e.g. in understanding whether certain types of site have a particular response.

The urban sites tend to give a consistent increase in O3 concentration, which will be

driven by the reduction in urban NOx. The greatest increase in O3 is predicted at the

central/inner London sites. For the rural sites, those that are in the most remote areas

tend to show very little change in O3 e.g. Mace Head, Strath Vaich and Eskdalemuir. As

sites become increasingly influenced by urban areas then there is an tendency for those

sites to show increased O3 concentrations. Overall, however, reducing NOx and VOCs

across the UK and Europe tends to result in increased annual mean O3 concentrations.

The models give a very similar response to S1 when action is taken to reduce NOx and
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F .: Model predictions of the change in annual mean O3 from Scenario 2. Negative values

show a reduction (improvement) in O3 concentration. The box and whisker plots help to show

where the distribution is centred.
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F .: Model predictions of the change in annual mean O3 from Scenario 3. Negative values

show a reduction (improvement) in O3 concentration. The box and whisker plots help to show

where the distribution is centred.

VOCs in the UK only (S2, Figure 4.2) or when only NOx is reduced in the UK+Europe

(S3, Figure 4.3) i.e. the changes in O3 are controlled by changes in NOx emissions.

For almost all scenarios considered, ensemble model produces results that are close to

the median of all models and perhaps represents a good ‘central estimate’.

Overall for scenario 4 (reduction in UK+Europe VOCs) there is a consistent response

of the models in that they all tend to show that O3 concentrations will decrease in rural

and urban locations. The actual change in O3 concentration is however small at about

1 µg m−3, but is similar for rural and urban sites. Also, rather than the most remote sites

showing the most reduction in O3 concentration, it tends to be sites located in south-east

England such as Sibton, Lullington Heath and Wicken Fen.
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F .: Model predictions of the change in annual mean O3 from Scenario S4. Negative

values show a reduction (improvement) in O3 concentration. The box and whisker plots help to

show where the distribution is centred.

4.3 Effect of scenarios on higher O3 concentration metrics

The ability of the models to predict changes in the higher concentration O3 metrics due

to precursor emission changes is an important aspect of their predictive ability. As noted

earlier there can be a large range in the accuracy of the models with respect to higher O3

concentration metrics when compared with measured values. However, it is not certain

how consistent a response the models will give to a change in precursor emissions. The

use of similar chemistry schemes etc. might for example suggest there is a high degree

of consistency. However, as the results in this section show, the response of individual

models is mixed.

The predictions for the number of days with a daily maximum of running 8-hour means

>100 µg m−3 O3 are shown in Table 4.2 and Figure 4.5 (Scenario S1). These results

show a very wide range in behaviour of the models at the different receptors. Considering

Scenario S1 in urban areas (Figure 4.5), O3 concentrations are predicted to increase

slightly. In rural areas there is a wider range in responses. Those locations in the most

remote areas of the UK and Ireland shows a consistent decrease in the number of days

with a daily maximum of running 8-hour means >100 µg m−3 O3. However, in more

intermediate sites such as Harwell there is little change in O3 predicted. The results again

highlight the while these general patterns of change are observed, there can be a large

difference in the response of individual models.

Reducing NOx and VOCs in the UK only (Figure 4.6) tends to increase urban O3

concentrations more than S1 and there is less reduction in O3 at the more remote sites.

These results show the benefit of action taken at a European scale versus UK-only action.
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T .: Summary changes in number of days with a daily maximum of running 8-hour means

>100 µg m−3 O3 across all receptors by model for 2006. Concentration values are given in µg m−3.

site.type data S1 S2 S3 S4

rural AEA-CMAQ -3.5 1.4 -1.4 -1.4

rural AQUM 1.6 1.9 4.2 -2.4

rural EMEP4UK -6.1 0.8 1.1 -8.9

rural ENSEMBLE -1.7 0.8 2.4 -3.3

rural Hert-CMAQ -1.7 0.2 -1.3 -0.6

rural KCL-CMAQ -0.2 3.7 3.0 -2.9

rural NAME -3.0 1.5 7.3 -7.7

rural OSRM -1.5 3.4 2.2 -2.6

urban AEA-CMAQ -2.0 3.9 0.1 -1.3

urban AQUM 5.9 6.3 8.1 -2.4

urban EMEP4UK -1.9 4.4 7.3 -8.3

urban ENSEMBLE 1.1 3.3 5.0 -4.0

urban Hert-CMAQ -0.3 3.3 1.4 -1.3

urban KCL-CMAQ 7.0 10.1 10.7 -4.1

urban NAME 1.0 7.0 14.0 -6.5

urban OSRM 2.0 7.1 5.1 -3.3
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F .:Model predictions of the change in in number of dayswith a dailymaximumof running

8-hour means >100 µg m−3 O3 for Scenario S1. Negative values show a reduction (improvement)

in O3 concentration. The box and whisker plots help to show where the distribution is centred.
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8-hour means >100 µg m−3 O3 for Scenario S2. Negative values show a reduction (improvement)

in O3 concentration. The box and whisker plots help to show where the distribution is centred.
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Reducing VOCs in the UK+Europe (S4) again shows that the models tend to agree

that the number of days exceeding 100 µg m−3 decreases in both rural and urban areas.

On average the decrease in exceeding days is modest (<5 days), but some models at

some receptors predict over 20 days.
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F .: Model predictions of the change in the number of days with a daily maximum

of running 8-hour means >100 µg m−3 for Scenario S4. Negative values show a reduction

(improvement) inO3 concentration. The box andwhisker plots help to showwhere the distribution

is centred.

The wide variation in the model predictions carries through to the estimates of the

maximum daily mean O3 concentration, shown in Table 4.3. The maximum daily mean

statsitic will represent peak sumertime O3 conditions. The model responses overall are

similar to the days with a daily maximum of running 8-hour means >100 µg m−3.
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T .: Summary changes in maximum daily O3 concentration across all receptors by model

for 2006. Concentration values are given in µg m−3.

site.type data S1 S2 S3 S4

rural AEA-CMAQ -2.4 1.8 -1.1 -1.4

rural AQUM -3.3 1.2 -0.1 -3.5

rural EMEP4UK -6.1 0.6 0.3 -9.1

rural ENSEMBLE -3.4 1.2 -0.5 -3.2

rural Hert-CMAQ -2.7 0.5 -2.1 -0.8

rural KCL-CMAQ 2.1 2.4 2.4 -0.4

rural NAME -3.0 0.5 3.9 -6.1

rural OSRM -1.7 0.7 0.0 -0.5

urban AEA-CMAQ 1.0 3.6 2.1 -1.0

urban AQUM -0.5 4.2 3.3 -2.4

urban EMEP4UK -4.0 4.5 2.4 -8.0

urban ENSEMBLE -0.2 6.4 2.7 -3.2

urban Hert-CMAQ -1.0 5.2 -0.0 -1.2

urban KCL-CMAQ 9.0 9.5 9.5 -2.0

urban NAME 3.4 9.6 19.0 -9.4

urban OSRM 1.1 4.6 1.3 -1.1
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F .: Model predictions of maximum daily mean O3 concentration for Scenario S1. Neg-

ative values show a reduction (improvement) in O3 concentration. The box and whisker plots

help to show where the distribution is centred.
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F .: Model predictions of maximum daily mean O3 concentration for Scenario S4.

Negative values show a reduction (improvement) in O3 concentration. The box and whisker plots

help to show where the distribution is centred.
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4.4 Effect on AOT40

The scenario results for the AOT40 metric are shown in Figure 4.11 to Figure 4.14.

In general the results follow a similar pattern to those for the maximum daily mean

concentration of O3. Again it is found that S4 is most effective.
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F .: Model predictions of AOT40 for Scenario S4. Negative values show a reduction

(improvement) inO3 concentration. The box andwhisker plots help to showwhere the distribution

is centred.

5 A closer look at episode conditions — July 2006

In this section we consider how well the models perform under important episode con-

ditions when O3 concentrations are elevated. The initial focus will be on the Harwell

site that has often been used for studying O3 episodes and for which all models have

predictions for, including the PTM. The focus will also be on July 2006 when there were

several distinct periods when O3 concentrations were greater than 50 ppb. Figure 5.1

shows the hourly O3 concentration at the Harwell site for 2006 and highlights several

periods where O3 concentrations were elevated. In particular, the first few days of July

and mid-July were periods when the concentration of O3 >50 ppb.

It is also worth considering the origins of the air masses during July 2006 at Harwell.

Figure 5.2 shows the 96-hour back trajectories for July 2006 at Harwell calculated using

the HYSPLIT model. The trajectories have been segregated according to O3 intervals

(0–25, 25–50 and >50 ppb) to highlight where the highest O3 concentration trajectories

originate. In fact many of the trajectories for high O3 (>50 ppb) result from circulatory

motion due to a high pressure system with origins in continental Europe.
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F .: Hourly O3 concentrations in July 2006 at the Harwell site.

F .: HYSPLIT 96-hour back trajectories for July 2006 at the Harwell site split by O3

concentration (0–25, 25–50 and >50 ppb).

5.1 Indicator species

An important concept in the modelling of O3 is whether concentrations of O3 are VOC

or NOx-sensitive. A regime is known as VOC-sensitive if a reduction in VOC emissions

leads to a greater reduction in O3 concentrations compared with the same reduction in

NOx emissions. Similarly, a NOx-sensitive regime is one in which a reduction in NOx

emissions would lead to a greater reduction in O3 than the equivalent reduction in VOCs.

Where a location is NOx or VOC sensitive depends on many factors (notably the relative

emissions of NOx or VOCs). An understanding of these regimes is very important for O3

modelling because a reduction in VOCs or NOx may lead to very different i.e. increases

or decreases in O3 concentration.

With respect to evaluation models, many methods have aimed to characterise the

responses of models to changes in precursor emissions in this way. Much of this work

originates from Sillman (1995), who developed and tested a series of ‘indicator’ species

that could be used to tell whether O3 concentrations were VOC orNOx-sensitive. Sillman

(1995) considers a range of different indicators to characterise O3 concentrations as NOx

or VOC-sensitive. A commonly used indicator is to plot the reduction inO3 concentration

in ppb on the y-axis to the ratio of O3/(NOy − NOx). The denominator is often referred

to as NO𝑧 (sum of the reaction products).
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Sillman (1995) showed that plotting the data in this way showed a transition from VOC

to NOx-sensitive conditions when O3/(NOy − NOx) >9.

Figure 5.3 shows the results of plotting the data according to Sillman (1995) for each

model for July across all sites. Most models show a cross-over from VOC to NOx-sensitive

when O3/(NOy − NOx) >15. However, there are some important differences in the way

the models respond. The Hertfordshire-CMAQ results are much less sensitive to VOC

control than the other models; in other words reducing VOC emissions has very little

effect on peak O3 concentrations at any site. This behaviour is also seen in the analysis

in Section 4. Some of the reasons for this behaviour are likely related to the higher

biogenic VOC emissions assumed by Hertfordshire-CMAQ (see Table 1.3). Therefore,

reducing anthropogenic VOCs would have less of an effect compared with other models

that assume no or considerably less BVOC emissions. There may also be effects due to

VOC reactivity because BVOCs tend to be more reactive than anthropogenic VOCs.

O3

NOy − NOx

O
3 

re
du

ct
io

n 
(p

pb
) 

−10

0

10
●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●
●

●● ●

●
●

●
●

● ●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●
●

●

●

●●
● ●●

● ●
●

●

● ●
●

●
●

●
●

●● ●● ●

●
●

●

●
●

●
●

●
●

●

●
●

●●●

●

●

● ●

●
●

●

●

●

●

●

● ●●

●●

●

●

●●

●

●

●
●

● ●

●

●

●●

●

●
●

● ●●

●

●

●

●
●

● ●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

● ●
●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
● ●

●

●

●

●

● ●●

●

●

●

●

●

●
●●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

● ●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●
●● ●●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●●

●● ●●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●
●

●●

●
● ●

●
●

●●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●●

●
● ●

●

● ●
●

●
●

●

●

●
●

●

●
●

●

●

●● ● ●

●
● ●

●

●

●
●

●

●

●

●

● ●
●

● ●●
●

●
●

●
●

AEA−CMAQ 

5 10 15 20

●

● ●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●
● ●● ●

●

●●
●

●●
● ●

●
●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●● ●●

●
●●

●

●
●●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●

●

●
● ●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●
●

●

●

● ●

●

● ●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●
●

●

●

● ●
●

●

●

●

● ● ●

● ●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●
●

●●●
● ●● ●

●●
●

●

●
●● ●

● ●●

●

●●
●

●
●

● ●●
●

●● ●●

AQUM 

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

● ●●●

●

●

●
● ●

●

●
●

●

●●

●

●
●

●

●●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●
●

●
●

● ●

●
● ●

●

●

●●
● ●

●

●
●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●● ●

●
●

●
●

●●
●

●

●

●

●
● ●

●

● ●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

● ●

●
●

●

●

●
●●

●
●

●

●

●

● ●

●

●
● ●

●

●

● ●

●

●

●●

● ●

● ●

●

●
●

●

●

●

●
● ●

●

●●

●

●
●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

● ●

●
● ●

●●

●

●

●
●

●

● ●●

●●

● ●

●

●

●● ●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

● ●

●● ●

●

●●
● ●● ●

●

●

●

●
●

●

●

● ●● ●

EMEP4UK 

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●
●

● ●
●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

● ●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●●
●

●
●

●

●

●●

●●

●

●

●
● ●

●

●
●

●

●

●

●
● ●

●

●

●
●

●
●●

●●
●● ●

●

●

●
●●

●

●

●
●

●

●

● ●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●●●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

● ●

●

●
●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

● ●
●●

●●●

●

●
●

●

● ●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●
●

●

●●●

●
●

●
●

●
●●

●

●●

● ●●
● ●

●
●●

●

ENSEMBLE 

● ● ●

●

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●

● ●
●

●
● ●

●
●

● ●
●

●●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●● ● ●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●
● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

● ●

●
●

●

●

● ●
●

●

●
●

●
●

●
●

●

●●

●
●

●
●

●

●

●

●
●

●
●● ●

●

●
●

●●● ●
●

●
●●

●
●

●

●
●●

●

●
●● ●●●

●

●

●●

●
● ●

●
●

●
●

●

●

●

●
●

● ●
● ●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●● ●

● ●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
● ●

●

●●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●● ●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●

●●

●
●

● ●
●

●
●

●
●●

●

●

●
●

●●
●● ●

●

●●

●

●●
●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●●

●

●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●
●●●

●

●

●

●

●

●● ● ●●●●

●
●

●
●

●
● ●

●

●● ●
●

●
●

● ●●

●
●

●● ●
●● ●

Hert−CMAQ 

−10

0

10

●
●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●●

●

●
●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●● ●●

● ●

●

●

●

●●
●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●
●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●
●

●
●●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●●● ●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

KCL−CMAQ 

−10

0

10

5 10 15 20

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

NAME 

●

●

●●

●

●●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

OSRM 

5 10 15 20

●

●
●

●

● ●
●

●

●

●
●

●

● ●

●

●
●

●

PTM 

control 
● NOx control 

VOC control 

F .: Plot of O3 reduction versus O3/(NO𝑦 − NOx) for 15:00 GMT, July 2006 for all sites.
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F .: Plot of O3 reduction versus O3/(NO𝑦 − NOx) at Harwell for 15:00 GMT, July 2006.
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5.2 Effect of NOx vs. VOC control and UK vs. European emissions control

The scenarios allow a more detailed consideration of the efficacy of NOx vs. VOC

control and how the models consider UK vs. UK + European control. These issues

are considered in more detail for the Harwell site in Derwent et al. (2013). To make

the analysis tractable the maximum daily rolling 8-hour mean O3 concentrations are

presented for July only.

Considering the Harwell site shown in Figure 5.5 it can be seen that all scenarios tend

to reduce O3 concentrations. However, as previously noted there is a large range in

responses by model. For example, reducing NOx + VOC by 30% across the UK and

Europe (S1) results in change in O3 from 1 µg m−3 (AQUM) to 17 µg m−3 (EMEP-4-UK).

A reduction in NOx only produces a more mixed response from the models; most show a

reduction but two models predict an increase in O3 (AQUM and OSRM). A reduction

in only VOC (S4) shows that all models predict a reduction in O3.

One important issue is that a detailed analysis of a single site might not represent

typical model behaviour at other locations. Clearly there will be site specific factors such

as the proximity to sources or particular meteorological conditions that will affect the

model results. More generally grid based models may not represent the O3 responses at

a particular point in space due to the incommensurability between volume-average and

point-wise observations (Swall and Foley 2009). For this reason it is worth considering

the response in O3 at other sites. Three other sites are shown in Figure 5.5 as examples

of other responses: Lullington Heath, Rochester and Wicken Fen, all the south-east of

England.
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F .: Effect on maximum rolling 8-hour O3 concentration for each scenario and four rural

sites. Negative values show a reduction (improvement) in O3 concentration. The box and whisker

plots help to show where the distribution is centred.

Considering the four sites together in Figure 5.5 there are two scenarios that the models

tend to show consistency with: S1 (NOx/VOC reduction in the UK and Europe) and

S4 (VOC reduction in the UK and Europe). Nevertheless, even here the response for

the models covers a wide range of O3 change. It is clear from Figure 5.5 that the models

are most uncertain when predicting the effect of NOx only reductions, as seen for S3.

In this case the response in O3 can be both large and opposite in sign. In the case of
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the Rochester site however, its proximity to London is likely to be important — where

reductions in NOx have a direct titration effect.

A selection of four urban sites has been considered in Figure 5.6. For these sites it

would be expected that those scenarios that reduce NOx emissions would perhaps tend

to increase concentrations of O3. Considering CLL2 (London Bloomsbury, the site

embedded in the highest NOx emissions) it can be seen that S2 most clearly results in the

most significant increase in O3 concentrations (between 1 and 9 µg m−3). This increase

is also seen to diminish as the location moves to outer urban areas (KC1 and LON6).

However, even in these four urban areas a reduction in NOx and VOCs across the UK

and Europe is still predicted to lead to reductions in O3 concentration. The other scenario

that could lead to increases in urban O3 is S3 where NOx alone is reduced in the UK and

Europe. However, these increases are only apparent in central and inner London (CLL2

and KC1).

S1 S2 S3 S4

●
●

●

● ●

● ●

●

●

●

●●

●

●● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

−20

−10

0

10

20

LO
N

6

M
A

N
4

K
C

1

C
LL2

LO
N

6

M
A

N
4

K
C

1

C
LL2

LO
N

6

M
A

N
4

K
C

1

C
LL2

LO
N

6

M
A

N
4

K
C

1

C
LL2

site

∆.
O

3 
(µ

g 
m

−3
) 

data

●

●

AEA−CMAQ

AQUM

EMEP4UK

ENSEMBLE

Hert−CMAQ

KCL−CMAQ

NAME

OSRM
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sites. Negative values show a reduction (improvement) in O3 concentration. The box and whisker

plots help to show where the distribution is centred.

An important issue is the extent to which the models are NOx or VOC sensitive i.e.

whether it is best to reduceNOx orVOCemissions to reduceO3 concentrations. Scenarios

S3 (30% reduction in NOx emissions in the UK + Europe) and S4 (30% reduction in

VOC emissions in the UK + Europe) can help answer this question. Of particular concern

are the higher concentrations of O3. For this reason consideration has been given to the

daily maximum rolling 8-hour mean concentration, although other metrics could also

be considered. Similar to Derwent et al. (2013), a day is considered NOx sensitive if

reducing emissions of NOx gives a greater reduction in O3 concentration compared with

a reduction in VOCs.

Again, to make the analysis tractable July 2006 has been considered. Figure 5.7 shows

the results for the models at the Harwell site, indicating whether each day is either

NOx or VOC sensitive. It is clear from Figure 5.7 that the models offer a wide range

of results from mostly VOC sensitive (AQUM and NAME) to mostly NOx sensitive

(Hertfordshire-CMAQ). These results indicate that O3 concentration in July at this site

are sensitively balanced between NOx and VOC sensitivity and that no consensus can be
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F .: Plots to show whether the models consider a day in July at Harwell to be sensitive to

reductions in NOx or VOCs. NOx-sensitive means that a reduction in NOx emissions results in a

greater decrease in O3 compared with a reduction in VOCs and vice-versa. Also shown are the

daily maximum rolling 8-hour mean concentrations of O3. These results relate to the effect on

the daily maximum of the rolling 8-hour mean O3 concentration.

reached as to which view is more likely to be right. There is only agreement on one of

the days (30th July), but 6 out of the 7 models evaluated do indicate the last 3 days of

July were NOx sensitive.

It should be noted however that O3-NOx-VOC sensitivity at individual locations and

for specific events are often very uncertain and the these results reflect that point (Sillman

1995; Sillman and He 2002). The sensitivity will be very dependent on both emission

assumptions (e.g. adequacy of absolute emission estimates and VOC speciation) but also

the whole chemistry-transport system. It is therefore perhaps not very surprising that

the models do not agree well in this respect. However, from a policy perspective these

findings are important because it cannot be said with certainty whether reducing NOx or

VOCs is the most beneficial approach for reducing peak O3 concentrations.

As discussed above, the results are Harwell seem to be finely balanced, which likely

reflects its rural location but which is also influenced by relatively local emissions of NOx.

By taking a wider view of more sites more of a consensus can be reached. Figure 5.8 shows

the number of days in July that are considered to be NOx sensitive or VOC sensitive,

split by model and site type. In this plot purple shading shows sites that are more NOx

sensitive and orange shading sites that are more VOC sensitive. This plot highlights

several issues. There is general agreement that there are more NOx-sensitive days at the
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rural sites such as Aston Hill, Yarner Wood and Mace Head. For these types of sites

the models show that most or all days are NOx sensitive. There is also agreement at the

urban background sites where the situation is ‘NOx saturated’ where a reduction in NOx

concentration would increase O3 concentration and in these cases the days in July are

dominated by VOC-sensitive conditions. At intermediate sites (such as Harwell), there

tends to be much more spread in the model predictions as noted above.
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F .: Plot showing the number of days in July 2006 that the models consider to be

NOx-sensitive or VOC sensitive. Purple colours show days that are more NOx-sensitive and

orange colours show days that are more VOC-sensitive. These results relate to the effect on the

daily maximum of the rolling 8-hour mean O3 concentration.

It is also useful to map the data shown in Figure 5.8 by site and model to consider the

spatial distribution of NOx sensitive days — shown in Figure 5.9 for rural sites. Now it

is possible to see that the models tend to show a south-east, north-west gradient, with

the south east of England being more VOC-sensitive and the north-west of the UK and

Ireland being more NOx sensitive. It is also clear from Figure 5.9 that AQUM, NAME

and EMEP-4-UK predict that the south-east of England is more VOC-sensitive than

the other models. The models are therefore reasonably consistent in identifying the

spatial variation in NOx and VOC sensitivity, but as noted previously, in intermediate

environments there can be a wide range of model responses.



5 A closer look at episode conditions — July 2006 59

F .: Maps showing the NOx-VOC sensitivity in July 2006. Blue shading shows sites that

are considered to be more NOx sensitive, red shows sites that are more VOC-sensitive with yellow

being intermediate between NOx and VOC sensitive. These results relate to the effect on the

daily maximum of the rolling 8-hour mean O3 concentration.

Following the approach of Derwent et al. (2012) consideration has been given to

whether UK or UK + European emissions control is most effective in reducing O3

concentrations. Again, consideration has been given to the daily maximum of the rolling

8-hour means in July. Comparisons between S1 (30% reduction in UK + Europe NOx

and VOC emissions) and S2 (30% reduction in UK only NOx and VOC emissions)

allows an approximate indication of whether UK or European emissions control is most

effective at reducing peak O3 concentrations. A simple approach has been taken where if

S1 results in more of s reduction in O3 compared with S2 it is labelled as a ‘European’

day i.e. European emissions control is more effective than UK only control.

Similar to the VOC-NOx sensitive analysis, the results have been presented in a grid

showing the number of days in July where European emissions control is more effective

than UK control. These results are shown in Figure 5.10. It is clear from Figure 5.10 that

the models highlight the clear benefit to UK + European control for peak O3 concen-
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trations compared with UK only control. Most models show that almost every day in

July benefits more from UK + European control. However, the NAME model does tend

to show that UK only control would be more effective on more days than most other

models. There is also an indication in Figure 5.10 that UK only control has more of an

effect for sites in the south-east of England (Lullington Heath, Sibton and Rochester).
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F .: Plot showing the number of days in July 2006 that the models consider it to be more

effective to reduce UK + European emissions of NOx and VOCs compared with reductions only

in the UK. These results relate to the effect on the daily maximum of the rolling 8-hour mean O3

concentration.

The NOx-VOC sensitivity issues can be further explored by considering the linkage

with the emissions estimates shown in Table 1.3. The area assumed to be Europe in each

model differs and for this reason the NOx/VOC ratio is considered rather than absolute

emission estimates. Figure 5.11 shows the NOx/VOC emission ratio plotted against the

number of days in July where each model considers a day to be more NOx sensitive for

Harwell. It is clear from Figure 5.11 that as the NOx/VOC ratio increases that there is a

tendency for the number of NOx-sensitive days to decrease. Models (or more specifically,

the assumptions used in the models) such as Hertfordshire-CMAQ assume much higher

biogenic VOC emissions than most other models. At the other extreme is the NAME

model that assumes zero biogenic emissions — as shown in Table 1.3.

The results shown in Figure 5.11 follow expectations in that when NOx emissions

are varied in a model with high VOC emissions the conditions are much more NOx

sensitive rather than VOC sensitive. These models have a larger ‘buffer’ of VOC making

them less sensitive to changes in anthropogenic emissions of VOC. It is also clear from

Figure 5.11 that these effects can be large; with models showing a wide range of responses

from mostly VOC to mostly NOx sensitive. In other words it seems that much of the

variation in the responses of the models to changes in VOC and NOx emissions is driven

by emission assumptions — and in particular the assumptions related to biogenic VOCs

at the European scale.
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F .: Plot showing the NOx/VOC emissions ratio based on European emission against the

number of days a model considers the conditions at Harwell to be NOx-sensitive. These results

relate to the effect on the daily maximum of the rolling 8-hour mean O3 concentration. Only

models that were able to provide European anthropogenic and biogenic emissions are included

(some groups could not supply biogenic emission estimates.)

6 Meteorological data analysis

The Phase 1 regional model analysis did not give any consideration to the meteorological

performance of the models. Details of Met Office surface meteorological stations are

given in Table 6.1 and Figure 6.1. Note that most of these surface met stations are coastal,

which may have important consequences for comparisons with modelled output e.g. due

to sea breezes.

The models produced output for all 11 receptors shown in Table 6.1, but the periods

covered by them differed. For example, some models produced hourly output for the

whole of 2006 whereas others considered only June and July or more limited periods. For

this reason the analysis separately considers individual model performance.

T .: Locations of Met Office surface met stations.

Site latitude longitude

Dunkeswell 50.86 -3.24

Weybourne 52.95 1.12

Pembrey Sands 51.71 -4.37

Church Fenton 53.84 -1.20

Edinburgh 55.93 -3.34

Lossiemouth 57.71 -3.32

Benson 51.62 -1.10

Herstmonceux 50.89 0.32

Crosby 53.50 -3.06

Heathrow 51.48 -0.45

Aldergrove 54.66 -6.22
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F .: Map showing the locations of the 11 Met Office surface meteorological stations.

6.1 Wind speed comparsions

In this section brief consideration is given to the comparison of wind speed distributions

from each model and how they compare with observed values. There are a very large

number of potential comparisons that could be undertaken but these have been limited

to providing an overview of key meteorological variables including wind speed, wind

direction and temperature. While these sites are in general well-located and should

represent conditions over wider areas, there is likely to be some local influences that the

models do not capture. For example, at the Herstmonceux site all models tend to over

estimate wind speeds.

Figure 6.2 shows the wind speed box and whisker plot for all models at Heathrow,

Church Fenton, Lossiemouth and Weybourne, as an example of model performance.

Focusing on July 2006 when all models have predictions available, the following model

performance statistics are calculated across all surface met sites. Overall AQUM and

NAME produce the best predictions, whereas the performance of EMEP is less good.

T .: Summary statistics for model wind speed performance across all sites for July 2006.

data.mod n FAC2 MB MGE NMB NMGE RMSE r COE

KCL-CMAQ 8041 0.81 -0.36 1.28 -0.10 0.34 1.72 0.66 0.26

AQUM 8041 0.81 -0.03 1.31 -0.01 0.35 1.69 0.66 0.25

NAME 8041 0.80 -0.04 1.31 -0.01 0.35 1.72 0.65 0.24

Hert-CMAQ 8041 0.78 0.19 1.39 0.05 0.37 1.79 0.64 0.20

AEA-CMAQ 8063 0.76 0.54 1.54 0.14 0.41 1.94 0.60 0.11

EMEP4UK 8041 0.68 -0.96 1.55 -0.26 0.42 2.04 0.61 0.11

WRF-Chem 7986 0.75 0.76 1.68 0.21 0.45 2.15 0.57 0.03

For all sites and months, the overall performance of the models is shown below. Several

of the models perform in a very similar way: KCL-CMAQ, AQUM and NAME. The
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performance of Hertfordshire-CMAQ, AEA-CMAQ andWRF-Chem is less good for

most metrics e.g. they have a higher RMSE and lower correlation coefficient.

T .: Summary statistics for model wind speed performance across all sites for 2006.

data.mod n FAC2 MB MGE NMB NMGE RMSE r COE

KCL-CMAQ 94465 0.86 -0.15 1.37 -0.03 0.29 1.79 0.80 0.40

AQUM 94465 0.87 -0.00 1.37 -0.00 0.29 1.82 0.79 0.40

NAME 94465 0.86 0.13 1.40 0.03 0.30 1.87 0.78 0.39

EMEP4UK 94103 0.80 -0.41 1.55 -0.09 0.33 2.03 0.76 0.32

Hert-CMAQ 94454 0.80 0.97 1.84 0.21 0.39 2.39 0.75 0.20

AEA-CMAQ 94307 0.77 1.23 2.02 0.26 0.43 2.59 0.72 0.12

WRF-Chem 11612 0.77 0.70 1.62 0.18 0.42 2.07 0.66 0.12

A summary of the wind speed performance over consistent time periods (July 2006) can

be shown using a Taylor Diagram (Taylor 2001). In Figure 6.3 the model performance

is compared on a site by site basis and the data normalised by the standard deviation

of the observed values. The NAME and AQUM models show the best performance

with measurements, with correlations between 0.7–0.8 and a variability closer to the

measurements than most other models.

A more detailed consideration of wind speed performance can be gained by plotting the

conditional quantiles as shown in Figure 6.4. Note that in this Figure the WRF-Chem

model only considers part of June and July. However, overall all models show good

performance, with good coverage of the wind speed range and with quantile values

that are generally close to the observed values. However, Figure 6.4 does highlight that

AEA-CMAQ and Hertfordshire-CMAQ tend to overestimate wind speeds, which is seen

by the position of the red median line and the histograms.

The diurnal variation in wind speed is also a good indicator of model performance and
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F .: Box and whisker plot showing the modelled and observed wind speed distributions

at Heathrow, Church Fenton, Lossiemouth and Weybourne.
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F .: Taylor Diagram of model wind speed performance in July 2006.
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F .: Conditional quantile plot of wind speed performance. The blue line shows the results

for a perfect model. In this case the observations cover a range from 0 to about 25 m s−1. The
red line shows the median value of the predictions. The shading shows the predicted quantile

intervals i.e. the 25/75th and the 10/90th. A perfect model would lie on the blue line and have a

very narrow spread. There is still some spread because even for a perfect model a specific quantile

interval will contain a range of values. However, for the number of bins used in this plot the spread

will be very narrow. Finally, the shaded histogram shows the counts of predicted values and the

histogram shown by the blue line shows the counts for the observed values.
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helps to reveal whether models adequately capture the variation in time of day correctly.

For example, wind speeds that are too high at night may indicate the model generates

an atmosphere that is too unstable and therefore dilutes primary emissions too much

and will also affect deposition processes. Figure 6.5 shows the diurnal variations of wind

speed and how they compare by model with observed wind speeds. Most models capture

the diurnal variation well (particularly the magnitude), although there is a tendency to

predict the peak wind speed too early in the day (typically around 12pm). Two of the

models do less well in capturing the amplitude of the diurnal wind speed: AEA-CMAQ

and Hertfordshire-CMAQ. Both these models clearly overestimate the magnitude of

overnight wind speeds.
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F .: Diurnal variation in wind speeds predicted across all Met Office surface sites.

6.2 Wind direction comparisons

Wind direction is more tricky to compare than other variables such as wind speed because

of the difficulty in presenting angular data. However, it is useful to consider the bias

in wind direction, as shown in Figure 6.6. In this plot the modelled − observed wind

direction is plotted for Heathrow as an example. There is a tendency for most models

to show a positive bias, which also tends to be seen at most other sites. Considering the

AEA-CMAQ as an example, there is on average a 20.8 degrees positive bias in wind

direction. Also shown in Figure 6.6 is an indication of whether the wind speed tends to

be over or underestimated. At this site at least, there is a tendency for the wind speed to

be underestimated for AQUM and KCL-CMAQ.

Across all meteorological sites AEA-CMAQ and KCL-CMAQ show a similar positive

bias of ≈20 degrees. AQUM and NAME show a slight positive bias of 7 to 12 degrees.

Hertfordshire-CMAQ only has a bias of 4 degrees. The analysis also shows that the

spread in wind directions for the models tends to be quite narrow and the most important

limitation of wind direction predictions in the positive bias shown by several of the models.

Note that there appears to be an issue with the EMEP-4-UK wind direction results —

likely due to post-processing issues.



6 Meteorological data analysis 66

Frequency of counts by wind direction (%)

W

S

N

E

5%

10%

15%

mean ws = 0.1

mean wd = 20.8

AEA−CMAQ 

W

S

N

E

5%

10%

15%

mean ws = −0.7

mean wd = 8.4

AQUM 

W

S

N

E

5%

10%

15%

mean ws = −0.7

mean wd = 4.4

Hert−CMAQ 

W

S

N

E

5%

10%

15%

mean ws = −1

mean wd = 19.2

KCL−CMAQ 

W

S

N

E

5%

10%

15%

mean ws = 0.3

mean wd = 12.1

NAME 

W

S

N

E

5%

10%

15%

mean ws = 0.2

mean wd = 10.8

WRF−Chem 

wind spd. 

−8 to 0

0 to 8

F .: Wind rose biases comparing observations with model predictions at Heathrow

for 2006. The plots show the bias in wind direction (modelled − observed) and wind speed

differences.

6.3 Ambient temperature comparsions

The model performance with respect to ambient temperature predictions is generally

very good with high correlations, low RMS error and similar variability. However, the

models do not tend to capture the temperature variation at the Weybourne site as well as

other sites. The results are shown in Figure 6.7 and Figure 6.8.

A summary of the overall model performance for temperature is shown below for July

2006.

T .: Summary statistics for model ambient temperature performance across all sites for July

2006.

data.mod n FAC2 MB MGE NMB NMGE RMSE r COE

Hert-CMAQ 8131 1.00 -0.07 1.63 -0.00 0.09 2.13 0.88 0.53

AQUM 8131 1.00 0.25 1.65 0.01 0.09 2.21 0.89 0.53

NAME 8131 1.00 -0.80 1.71 -0.04 0.09 2.18 0.89 0.51

KCL-CMAQ 8131 1.00 -0.81 2.11 -0.04 0.11 2.77 0.83 0.40

WRF-Chem 8076 0.99 -1.30 2.14 -0.07 0.11 2.83 0.85 0.39

AEA-CMAQ 8153 1.00 -1.19 2.22 -0.06 0.12 2.95 0.80 0.36

EMEP4UK 8131 1.00 -1.98 2.81 -0.11 0.15 3.52 0.80 0.20

The statistics for all months and sites are:

The diurnal variations in temperature are shown in Figure 6.9, which shows that most

models capture the diurnal variation in ambient temperature very well. Nevertheless,
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F .: Taylor Diagram of model ambient temperature performance in July 2006.
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F .: Conditional quantile plot of ambient temperature performance. The blue line shows

the results for a perfect model. In this case the observations cover a range from 0 to about 25 m s−1.
The red line shows the median value of the predictions. The shading shows the predicted quantile

intervals i.e. the 25/75th and the 10/90th. A perfect model would lie on the blue line and have a

very narrow spread. There is still some spread because even for a perfect model a specific quantile

interval will contain a range of values. However, for the number of bins used in this plot the spread

will be very narrow. Finally, the shaded histogram shows the counts of predicted values and the

histogram shown by the blue line shows the counts for the observed values.
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T .: Summary statistics for model ambient temperature performance across all sites for

2006.

data.mod n FAC2 MB MGE NMB NMGE RMSE r COE

AQUM 95178 0.92 -0.07 1.22 -0.01 0.12 1.63 0.97 0.75

NAME 95178 0.92 -0.45 1.31 -0.04 0.12 1.72 0.96 0.74

KCL-CMAQ 95178 0.90 -0.30 1.50 -0.03 0.14 2.00 0.95 0.70

Hert-CMAQ 95167 0.91 0.81 1.59 0.08 0.15 2.12 0.95 0.68

EMEP4UK 94816 0.90 -0.80 1.82 -0.08 0.17 2.39 0.93 0.63

AEA-CMAQ 95020 0.90 0.42 1.87 0.04 0.18 2.48 0.92 0.62

WRF-Chem 11664 0.99 -1.16 2.00 -0.07 0.11 2.63 0.87 0.44

EMEP-4-UK does tend to underestimate nighttime temperatures and Hertfordshire-

CMAQ and AEA-CMAQ overestimate nighttime temperatures. Overall, the perform-

ance of the models for temperature is better than that for other important variables such

as wind speed.
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F .: Diurnal variation in ambient temperature predicted across all Met Office surface sites.

6.4 Relative humidity comparisons

The overall statistics for all months and sites are shown below.
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T .: Summary statistics for model relative humidity performance across all sites for July

2006.

data.mod n FAC2 MB MGE NMB NMGE RMSE r COE

NAME 8128 1.00 -0.19 8.30 -0.00 0.11 10.79 0.81 0.44

Hert-CMAQ 8128 1.00 -1.04 8.97 -0.01 0.12 11.56 0.77 0.39

KCL-CMAQ 8128 1.00 2.03 8.97 0.03 0.12 11.69 0.77 0.39

AEA-CMAQ 8150 1.00 2.87 9.31 0.04 0.13 12.22 0.77 0.37

AQUM 8128 0.99 -4.65 10.20 -0.06 0.14 13.54 0.77 0.31

WRF-Chem 8073 0.99 9.87 12.33 0.13 0.17 15.64 0.73 0.17

EMEP4UK 8128 0.97 15.29 16.81 0.21 0.23 21.25 0.60 -0.14

T .: Summary statistics for model relative humidity performance across all sites in 2006.

data.mod n FAC2 MB MGE NMB NMGE RMSE r COE

NAME 94658 1.00 -0.20 6.69 -0.00 0.08 8.76 0.80 0.40

AQUM 94658 1.00 -0.78 7.23 -0.01 0.09 9.72 0.79 0.36

KCL-CMAQ 94658 1.00 2.22 7.41 0.03 0.09 9.64 0.76 0.34

AEA-CMAQ 94500 1.00 0.85 8.23 0.01 0.10 10.81 0.69 0.27

Hert-CMAQ 94647 1.00 -4.38 8.90 -0.05 0.11 11.19 0.70 0.21

WRF-Chem 11661 0.99 9.92 12.36 0.13 0.17 15.68 0.71 0.12

EMEP4UK 94296 0.99 7.38 10.02 0.09 0.12 13.57 0.61 0.11
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F .: Taylor Diagram of model relative humidity performance in July 2006.

The conditional quantile plot shown in Figure 6.11 shows that NAME, AQUM and

KCL-CMAQ agree best with measured values. The WRF-Chem results indicate that

the model tends to predict higher values of RH than the measurements, while the EMEP

results look somewhat unusual (some conversion problem?).



6 Meteorological data analysis 70

modelled relative humidity (%) 

20

40

60

80

100

AEA−CMAQ 

20 40 60 80 100

AQUM EMEP4UK 

20 40 60 80 100

0

5000

10000

15000

20000

25000

Hert−CMAQ 

20 40 60 80 100

20

40

60

80

100

KCL−CMAQ NAME 

20 40 60 80 100

0

5000

10000

15000

20000

25000

WRF−Chem 

sa
m

pl
e 

si
ze

 fo
r 

hi
st

og
ra

m
s

25/75th percentile
10/90th percentile

median
perfect model

m
ea

su
re

d 
re

la
tiv

e 
hu

m
id

ity
 (

%
) 

F .: Conditional quantile plot of relative humidity performance for all sites and month.

The blue line shows the results for a perfect model. The red line shows the median value of the

predictions. The shading shows the predicted quantile intervals i.e. the 25/75th and the 10/90th.

A perfect model would lie on the blue line and have a very narrow spread. There is still some

spread because even for a perfect model a specific quantile interval will contain a range of values.

However, for the number of bins used in this plot the spread will be very narrow. Finally, the

shaded histogram shows the counts of predicted values and the histogram shown by the blue line

shows the counts for the observed values.

6.5 Boundary layer height comparisons

This section compares the boundary layer height (BLH) estimates from the models. It

was not possible to obtain observed values of BLH and hence models are compared with

one another. However, it is possible to consider whether O3 predictions are affected

by BLH predictions and this is also considered. The mean predictions of BLH across

all receptors were as follows: AEA-CMAQ = 634, AQUM = 763, EMEP-4-UK = 866,

KCL-CMAQ = 270, Hertfordshire-CMAQ = 686 and NAME = 572 m. There are

therefore considerable differences in the BLH estimates i.e. a factor of 3.2 between the

lowest to highest (KCL-CMAQ to EMEP-4-UK). Such large differences in the models

do not appear to translate through to clear differences in predicted concentrations.

Figure 6.12 shows the diurnal variation in BLH by model and by season at the Harwell

site. There is a relatively wide variation in BLH between the models and especially

during the winter months. In particular, the KCL-CMAQ model has a much lower BLH

than the other models.
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F .: Diurnal variation in boundary layer height predicted at the Harwell site by season.

The BLH values seem to have very little influence on the predicted concentrations of

all pollutants. For example, in Figure 6.13 the conditional quantile plot for NOx is shown.

AQUM and EMEP-4-UK are both shown to overestimate concentrations of NOx— in

particular AQUM. An overestimate of surface NOx concentrations could be related to an

underestimate of BLH, but this is not the case. For example, when the predicted value of

NOx is 50 ppb, the associated boundary layer height varies considerably.

It is difficult to reconcile this behaviour with the overall meteorological predictions.

For example, AQUM and KCL-CMAQ predict the diurnal variation in wind speed and

temperature rather well (see Figure 6.5 and Figure 6.9).
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right shows the corresponding mean values of BLH.
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F A.: Taylor Diagram of the number of days with a daily maximum of running 8-hour

means O3 >100 µg m−3.
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F A.: Taylor Diagram of annual mean predicted and measured O3 concentrations.
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B Model performance evaluation statistics

There are a very wide range of evaluation statistics that can be used to assess model

performance. There is, however, no single statistic that encapsulates all aspects of interest.

For this reason it is useful to consider several performance statistics and also to understand

the sort of information or insight they might provide. The performance statistics used

here have mostly been guided by D et al. 2010.

In the following definitions, 𝑂𝑖 represents the 𝑖th observed value and 𝑀𝑖 represents the

𝑖th modelled value for a total of 𝑛 observations.

Fraction of predictions within a factor or two, FAC2

The fraction of modelled values within a factor of two of the observed values are the

fraction of model predictions that satisfy:

0.5 ≤
𝑀𝑖

𝑂𝑖
≤ 2.0 (1)

Mean bias, MB

Themean bias provides a good indication of themean over or under estimate of predictions.

Mean bias in the same units as the quantities being considered.

𝑀𝐵 =
1
𝑛

𝑁
󰡗
𝑖=1

𝑀𝑖 − 𝑂𝑖 (2)

Mean Gross Error, MGE

The mean gross error provides a good indication of the mean error regardless of whether

it is an over or underestimate. Mean gross error is in the same units as the quantities being

considered.

𝑀𝐺𝐸 =
1
𝑛

𝑁
󰡗
𝑖=1

|𝑀𝑖 − 𝑂𝑖| (3)

Normalised mean bias, NMB

The normalised mean bias is useful for comparing pollutants that cover different concen-

tration scales and the mean bias is normalised by dividing by the observed concentration.

𝑁𝑀𝐵 =

𝑛
∑
𝑖=1

𝑀𝑖 − 𝑂𝑖

𝑛
∑
𝑖=1

𝑂𝑖

(4)

Normalised mean gross error, NMGE

The normalised mean gross error further ignores whether a prediction is an over or

underestimate.
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𝑁𝑀𝐺𝐸 =

𝑛
∑
𝑖=1

|𝑀𝑖 − 𝑂𝑖|
𝑛

∑
𝑖=1

𝑂𝑖

(5)

Root mean squared error, RMSE

The RMSE is a commonly used statistic that provides a good overall measure of how

close modelled values are to predicted values.

𝑅𝑀𝑆𝐸 = 󰝔

𝑛
∑
𝑖=1

(𝑀𝑖 − 𝑂𝑖)2

𝑛 󰝕
1/2

(6)

Correlation coefficient, r

The (Pearson) correlation coefficient is a measure of the strength of the linear relationship

between two variables. If there is perfect linear relationship with positive slope between

the two variables, r = 1. If there is a perfect linear relationship with negative slope between

the two variables r = −1. A correlation coefficient of 0 means that there is no linear

relationship between the variables.

𝑟 =
1

(𝑛 − 1)

𝑛
󰡗
𝑖=1

⎛⎜
⎝

𝑀𝑖 − 𝑀
𝜎𝑀

⎞⎟
⎠

⎛⎜
⎝

𝑂𝑖 − 𝑂
𝜎𝑂

⎞⎟
⎠

(7)

Coefficient of Efficiency, COE

The Coefficient of Efficiency based on L and MC (2012) and L and

MC J (1999). There have been many suggestions for measuring model performance

over the years, but the COE is a simple formulation which is easy to interpret.

A perfect model has a COE = 1. As noted by Legates and McCabe although the COE

has no lower bound, a value of COE = 0.0 has a fundamental meaning. It implies that

the model is no more able to predict the observed values than does the observed mean.

Therefore, since the model can explain no more of the variation in the observed values

than can the observed mean, such a model can have no predictive advantage.

For negative values of COE, the model is less effective than the observed mean in

predicting the variation in the observations.

𝐶𝑂𝐸 = 1.0 −

𝑛
∑
𝑖=1

|𝑀𝑖 − 𝑂𝑖|
𝑛

∑
𝑖=1

|𝑂𝑖 − 𝑂|
(8)
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C Code used to produce outputs

This section contains all the code that produces the Figures and Tables. The data used in

this report are stored in a dropbox folder owned by David Carslaw. Users of the data can

contact David Carslaw at mailto:david.carslaw@kcl.ac.uk to request access. The

data itself can then be downloaded to a suitable local location. Note that in order for the

code to run, users would need to change the path of some of the file locations. There is

also a ReadMe.txt file that should be read.

## ----loadPackages--------------------------------------------------------

## load all packages we need

library(openair)

library(latticeExtra)

library(plyr)

library(ggplot2)

library(xtable)

library(lattice)

library(reshape2)

## set ggplot plots to B&W

theme_set(theme_bw())

trellis.par.set(list(strip.background = list(col = "white")))

## make sure wd is correctly set

#setwd("~/Projects/modelEvaluation/phase2/regional/")

## ----loadO3--------------------------------------------------------------

load("./data/o3Meas.RData")

load("./data/KCLMod.RData")

load("./data/OSRMMod.RData")

load("./data/HertMod.RData")

load("./data/EMEP4UKMod.RData")

load("./data/EMEP4UK.EXPMod.RData")

load("./data/NAMEMod.RData")

load("./data/AEAMod.RData")

load("./data/AQUMMod.RData")

load("./data/WRFChemMod.RData")

## met data

load("./data/metDataProc.RData")

allMet <- rbind.fill(emepMet, NAMEmet, AQUMmet, WRFChem, KCLmet, AEAmet,

Hertmet)

allMet <- merge(metMeas, allMet, by = c("date", "site"), suffixes = c(".obs", ".mod"))

metLong <- rbind.fill(metMeas, emepMet, NAMEmet, AQUMmet, WRFChem, KCLmet, AEAmet, Hertmet)

## ----loadBLH-------------------------------------------------------------

load("./data/metDataBLH.RData")

BLH <- rbind.fill(AEA.BLH, KCL.BLH, Hert.BLH, AQUM.BLH, NAME.BLH, EMEP.BLH)

## ----makeEnsemble--------------------------------------------------------

## simple averging of everything to represent an ensemble

ENSEMBLE.base <- rbind.fill(EMEP.base, Hert.base, KCL.base, NAME.base, OSRM.base,

AEA.base, AQUM.base)

ENSEMBLE.base <- aggregate(subset(ENSEMBLE.base, select = -c(scenario, site, date, data)),

subset(ENSEMBLE.base, select = c(site, date)), mean, na.rm = TRUE)

ENSEMBLE.base$data <- "ENSEMBLE"

ENSEMBLE.S1 <- rbind.fill(EMEP.S1, Hert.S1, KCL.S1, NAME.S1, OSRM.S1,

AEA.S1, AQUM.S1)

ENSEMBLE.S1 <- aggregate(subset(ENSEMBLE.S1, select = -c(scenario, site, date, data)),

subset(ENSEMBLE.S1, select = c(site, date)), mean, na.rm = TRUE)

ENSEMBLE.S1$data <- "ENSEMBLE"

ENSEMBLE.S2 <- rbind.fill(EMEP.S2, Hert.S2, KCL.S2, NAME.S2, OSRM.S2,

AEA.S2, AQUM.S2)

ENSEMBLE.S2 <- aggregate(subset(ENSEMBLE.S2, select = -c(scenario, site, date, data)),

subset(ENSEMBLE.S2, select = c(site, date)), mean, na.rm = TRUE)

ENSEMBLE.S2$data <- "ENSEMBLE"

ENSEMBLE.S3 <- rbind.fill(EMEP.S3, Hert.S3, KCL.S3, NAME.S3, OSRM.S3,

AEA.S3, AQUM.S3)

ENSEMBLE.S3 <- aggregate(subset(ENSEMBLE.S3, select = -c(scenario, site, date, data)),

subset(ENSEMBLE.S3, select = c(site, date)), mean, na.rm = TRUE)

ENSEMBLE.S3$data <- "ENSEMBLE"

ENSEMBLE.S4 <- rbind.fill(EMEP.S4, Hert.S4, KCL.S4, NAME.S4, OSRM.S4,

AEA.S4, AQUM.S4)

ENSEMBLE.S4 <- aggregate(subset(ENSEMBLE.S4, select = -c(scenario, site, date, data)),

subset(ENSEMBLE.S4, select = c(site, date)), mean, na.rm = TRUE)

mailto:david.carslaw@kcl.ac.uk
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ENSEMBLE.S4$data <- "ENSEMBLE"

## ----loadAlloc-----------------------------------------------------------

alloc <- read.table("./data/MH_E_rawbasefit_o3_2006.txt", header =TRUE, skip=9)

alloc <- transform(alloc, date = ISOdatetime(YY, MM, DD, HH, min=0, sec=0, tz="GMT"))

alloc <- subset(alloc, select = c(date, B))

alloc$B <- as.character(alloc$B)

## ----clusterO3MH, w=6,h=5,results='hide',dev='png',dpi=600, out.width='0.6\\textwidth'----

## import back trajectories for Mace Head in 2006

traj <- importTraj("mh", 2006)

## perform cluuster analysis with an angle-based distance matrix

trajMH <- trajCluster(traj, method = "angle", n.cluster= 4)

## ----findClust,fig.keep='none'-------------------------------------------

allMH <- rbind.fill(subset(EMEP.base, site == "MH"),

subset(EMEP.EXP.base, site == "MH"),

subset(Hert.base, site == "MH"),

subset(KCL.base, site == "MH"),

subset(NAME.base, site == "MH"),

subset(OSRM.base, site == "MH"),

subset(AEA.base, site == "MH"),

subset(AQUM.base, site == "MH"),

subset(ENSEMBLE.base, site == "MH"))

## only need O3

allMH <- subset(allMH, select = c(date, data, O3))

measMH <- subset(o3Meas, site == "MH", select = c(date, O3))

## add Dick's allocation

allMH <- merge(allMH, alloc, by = "date")

measMH <- merge(measMH, alloc, by = "date")

## wide version for model statistics

allWide <- merge(allMH, measMH, by = c("date", "B"), suffix = c(".mod", ".obs"))

measMH[, "data"] <- "MEASURED"

allMH <- rbind.fill(allMH, measMH)

## don't need all trajectory points

allMHTraj <- merge(allMH, subset(trajMH, hour.inc == 0), by = "date")

allWideTraj <- merge(allWide, subset(trajMH, hour.inc == 0), by = "date")

## put measured values first

allMHTraj$data <- relevel(factor(allMHTraj$data), ref = "MEASURED")

## calculate temporal components

clustTv <- timeVariation(subset(allMHTraj, cluster %in% c("C2", "C3")),

pollu = "O3",

group = "cluster", type = "data",

ci = FALSE, col = "Set1", lwd = c(2, 2, 4, 2),

ylab = "ozone (ppb)")

## ----clusterMeans, results='hide',echo=FALSE, message=FALSE--------------

tmp <- ddply(subset(allMHTraj, select = c(data, cluster, O3)),

.(cluster, data), numcolwise(mean), na.rm=TRUE)

tmp <- dcast(tmp, cluster ~ data)

## subract measured values first

id <- which(names(tmp) == "MEASURED")

tmp[, 2:11] <- tmp[2:11] - tmp[, id]

tmp <- melt(tmp)

tmp <- dcast(tmp, variable ~ cluster)

names(tmp)[1] <- "model"

## ----clusterMeansTable,results='asis',echo=FALSE-------------------------

print(xtable(tmp,

caption = "Summary mean \\ozone concentrations by model and

cluster at Mace Head with measured values subracted (ppb).",

label = "tab:modMeanClust", digits= 1),

size= "small",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----Alloc, fig.keep='none'----------------------------------------------

## calculate temporal components

## rename allocation numbers

allMH$B[allMH$B == "1"] <- "Baseline"

allMH$B[allMH$B == "4"] <- "European"

allocDat <- subset(allMH, B %in% c("European", "Baseline"))

## put measured first

allocDat$data <- relevel(factor(allocDat$data), ref = "MEASURED")

allocTv <- timeVariation(allocDat, pollu = "O3",

group = "B", type = "data",

ci = FALSE,
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col = rev(openColours("Set1", 2)),

ylab = "ozone (ppb)")

## ----plotClustMonth, w=6, h=6, fig.show='hold', out.width='0.49\\textwidth'----

plot(clustTv, subset = "month")

plot(allocTv, subset = "month")

## ----plotClustDiurnal, w=6, h=6,fig.show='hold', out.width='0.49\\textwidth'----

plot(clustTv, subset= "hour")

plot(allocTv, subset = "hour")

## ----modStatsClust,results='asis',echo=FALSE-----------------------------

tmp <- modStats(subset(allWideTraj, cluster == "C3"), mod = "O3.mod", obs = "O3.obs",

type =c("cluster", "data"), rank.name = "data")

print(xtable(subset(tmp, select = -cluster),

caption = "Summary statistics for Cluster 3 model performance.",

label = "tab:modStatsClust"),

size = "footnotesize",

booktabs= TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----modStatsClustAlloc,results='asis',echo=FALSE------------------------

tmp <- modStats(subset(allWide, B == "1"), mod = "O3.mod", obs = "O3.obs",

type =c("B", "data"), rank.name = "data")

print(xtable(subset(tmp, select = -B),

caption = "Summary statistics for `baseline air' model performance using the more refined air-mass allocation method.",

label = "tab:modStatsClustAlloc"),

size = "footnotesize",

booktabs= TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----condQuantClust,w=10,h=6,out.width='1\\textwidth', results='hide'----

conditionalQuantile(subset(allWideTraj, cluster == "C3"), mod = "O3.mod",

obs = "O3.obs",

type = "data", xlab = "prediction o3 (ppb)",

ylab = "measured o3 (ppb)")

## ----siteTypes-----------------------------------------------------------

## useful to sub-select later

urban.sites <- c("CLL2", "BIR1", "KC1", "TED", "LON6", "MAN3", "MAN4")

rural.sites <- c("AH", "BOT", "BUSH", "ESK", "GLAZ", "HAR", "HM", "LB", "LH",

"LN", "MH", "ROCH", "SIB", "SV", "WFEN", "YW")

## ----combineBase---------------------------------------------------------

all.data <- rbind.fill(AEA.base, AQUM.base, EMEP.base, EMEP.EXP.base,

Hert.base, KCL.base, NAME.base,

OSRM.base, WRFChem.base, ENSEMBLE.base)

all.data <- merge(all.data, o3Meas, by = c("site", "date"),

suffixes=c(".mod", ".obs"))

all.data <- transform(all.data, NOx.obs = NO.obs + NO2.obs,

NOx.mod = NO.mod + NO2.mod,

OX.obs = NO2.obs + O3.obs, OX.mod = NO2.mod + O3.mod)

## index

all.data <- ddply(all.data, .(data), rollingMean, pollutant="O3.obs",

new.name = "O3.roll.obs")

all.data <- ddply(all.data, .(data), rollingMean, pollutant="O3.mod",

new.name = "O3.roll.mod")

all.data <- transform(all.data, index = cut(2 * O3.roll.obs,

breaks = c(0, 34, 66, 100, 121, 141, 160, 188,

214, 240, 500),

labels=c("Low.1", "Low.2", "Low.3",

"Moderate.4", "Moderate.5", "Moderate.6",

"High.7", "High.8",

"High.9", "Very High.10")))

## ----statsMeas-----------------------------------------------------------

statsMeas <- aqStats(transform(o3Meas, O3 = O3 * 2), pollutant = "O3")

## ----printStats,results='asis', cache=FALSE, fig.align='default', echo=FALSE----

print(xtable(subset(statsMeas,select = -c(pollutant, year)), digits = 0,

caption = "Summary measured \\ozone statistics by site for 2006.

Concentration values are given in \\ug.",

label = "tab:o3StatsMeas"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top",

rotate.colnames = TRUE)

## ----summaryStat---------------------------------------------------------
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## statistics summary

## for each model, merge with measurements and calcuate summary stats

meta <- importMeta() ## AURN site details

statSite <- function (x) {

## calc AQ stats by site to allow latitude to be used in AOT40

res <- aqStats(x, poll = "o3", latitude = meta$latitude[meta$code == x$site[1]])

res

}

makeSumStat <- function(thedata) {

## first merge model data with observations

group <- thedata$data[1]

thedata <- merge(subset(thedata, select = c(date, site, O3)),

subset(o3Meas, select = c(date, site, O3)),

by = c("date", "site"), suffixes = c(".mod", ".obs"))

## calculate aq stats for measurements/model

## convert to ug/m3 for calculations

obs <- ddply(transform(thedata, o3 = 2 * O3.obs), .(site), statSite)

mod <- ddply(transform(thedata, o3 = 2 * O3.mod), .(site), statSite)

thedata <- merge(obs, mod, by = "site", suffixes = c(".obs", ".mod"))

thedata$data <- group

thedata

}

## summary of key model stats, matching measurements on a per site basis

stats <- ldply(list(EMEP.base, EMEP.EXP.base, AQUM.base, KCL.base, AEA.base,

Hert.base, OSRM.base,

NAME.base, ENSEMBLE.base), makeSumStat)

## add site.type

stats$site.type[stats$site %in% rural.sites] <- "rural"

stats$site.type[stats$site %in% urban.sites] <- "urban"

## ----corPlot,w=6,h=6,out.width='0.5\\textwidth'--------------------------

corPlot(stats, poll=c("mean.obs", "maximum.obs", "max.daily.obs", "max.rolling.8.obs",

"percentile.99.obs", "roll.8.O3.gt.100.obs","AOT40.obs"),

col = c("white", "white", "grey"))

## ----annualOzone,w=8,h=4,out.width='1\\textwidth'------------------------

annStat <- modStats(stats, obs = "mean.obs", mod = "mean.mod",

type = c("site.type", "data"), rank = "data")

scatterPlot(annStat, x="NMB", y="NMGE", group = "data", type = "site.type",

cex = 2, pch = c(15:19, 8, 11, 12), col = "Dark2", ref.x = 0,

xlim = c(-0.5, 0.5), ylim = c(0, NA))

## ----modPerMeanSiteType, results='asis'----------------------------------

print(xtable(annStat,

caption = "Summary statistics for annual mean \\ozone performance split by site type.",

label = "tab:modStatsMeanO3SiteType"),

size = "scriptsize",

booktabs= TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----meanPointrange,w=8,h=5,out.width='0.8\\textwidth'-------------------

tmp <- with(stats, aggregate(mean.mod, list(site = site, type = site.type), range))

tmp <- data.frame(tmp[, c(1, 2)], as.data.frame(tmp[, 3]))

tmp[, "obs"] <- with(stats, aggregate(mean.obs, list(site = site, type = site.type), mean))[, 3]

names(tmp)[3:4] <- c("ymin", "ymax")

ggplot(tmp, aes(site, obs, ymin= ymin, ymax = ymax, col = type, shape = type)) +

geom_pointrange(size = 1) +

ylim(0, 90) + ylab(quickText("o3 (ug/m3)")) +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5))

## ----modPerAOT40, results='asis'-----------------------------------------

print(xtable(modStats(stats, obs = "AOT40.obs", mod = "AOT40.mod",

type = c("site.type", "data"), rank ="data"),

caption = "Summary statistics for AOT40 \\ozone performance.",

label = "tab:modStatsAOT40O3"),

size = "scriptsize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----AOT40Ozone,w=8,h=4,out.width='1\\textwidth'-------------------------

AOT40Stat <- modStats(stats, obs = "AOT40.obs", mod = "AOT40.mod",

type = c("site.type", "data"), rank = "data")

scatterPlot(AOT40Stat, x="NMB", y="NMGE", group = "data", type = "site.type",

cex = 2, pch = c(15:19, 8, 11, 12), col = "Dark2", ref.x = 0,

xlim = c(-0.6, 0.6), ylim = c(0, NA))

## ----AOT40Pointrange,w=8,h=5,out.width='0.8\\textwidth'------------------
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tmp <- with(stats, aggregate(AOT40.mod, list(site = site, type = site.type), range))

tmp <- data.frame(tmp[, c(1, 2)], as.data.frame(tmp[, 3]))

tmp[, "obs"] <- with(stats, aggregate(AOT40.obs, list(site = site, type = site.type), mean))[, 3]

names(tmp)[3:4] <- c("ymin", "ymax")

ggplot(tmp, aes(site, obs, ymin = ymin, ymax = ymax, col =type, shape = type)) +

geom_pointrange(size = 1) +

ylab(quickText("o3 (ug/m3).hours")) +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5))

## ----modPerRoll, results='asis'------------------------------------------

print(xtable(modStats(stats, obs = "roll.8.O3.gt.100.obs", mod = "roll.8.O3.gt.100.mod",

type = c("site.type", "data"), rank ="data"),

caption = "Summary statistics for number of days with a daily maximum

of running 8-hour means $>$100~\\ug.",

label = "tab:modStatsDays100O3"),

size = "scriptsize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----roll8Ozone,w=8,h=4,out.width='1\\textwidth'-------------------------

roll8Stat <- modStats(stats, obs = "roll.8.O3.gt.100.obs", mod = "roll.8.O3.gt.100.mod",

type = c("site.type", "data"), rank = "data")

scatterPlot(roll8Stat, x="NMB", y="NMGE", group = "data", type = "site.type",

cex = 2, pch = c(15:19, 8, 11, 12), col = "Dark2", ref.x = 0,

ylim = c(0, NA))

## ----roll8Pointrange,w=8,h=5,out.width='0.8\\textwidth'------------------

tmp <- with(stats, aggregate(roll.8.O3.gt.100.mod, list(site = site, type = site.type), range))

tmp <- data.frame(tmp[, c(1, 2)], as.data.frame(tmp[, 3]))

tmp[, "obs"] <- with(stats, aggregate(mean.obs, list(site = site, type = site.type), mean))[, 3]

names(tmp)[3:4] <- c("ymin", "ymax")

ggplot(tmp, aes(site, obs, ymin =ymin, ymax = ymax, col = type, shape = type)) +

geom_pointrange(size = 1) +

ylim(0, 120) + ylab(quickText("days o3 is greater than threshold")) +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5))

## ----statSenstivity------------------------------------------------------

## consider a +/- 10% change in base case EMEP concentrations

EMEP.minus <- transform(EMEP.base, O3 = O3 * 0.9)

EMEP.plus <- transform(EMEP.base, O3 = O3 * 1.1)

EMEP.minus$data <- "MINUS"

EMEP.plus$data <- "PLUS"

sens <- ldply(list(EMEP.base,EMEP.minus, EMEP.plus), makeSumStat)

## just need the one statistic

emep.sens <- subset(sens, select = c(site, roll.8.O3.gt.100.mod, data))

emep.sens <- melt(emep.sens)

emep.sens <- dcast(emep.sens, ... ~ data)

## ----emepSensFig,w=8,h=5,out.width='0.8\\textwidth'----------------------

ggplot(emep.sens, aes(site, EMEP4UK, ymin = MINUS, ymax = PLUS)) +

geom_pointrange(size = 1) + ylim(0, 110) +

ylab(quickText("days o3 is greater than threshold")) +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5))

## ----maxDailyOzone,w=8,h=4,out.width='1\\textwidth'----------------------

roll8Stat <- modStats(stats, obs = "max.daily.obs", mod = "max.daily.mod",

type = c("site.type", "data"), rank = "data")

scatterPlot(roll8Stat, x="NMB", y="NMGE", group = "data", type = "site.type",

cex = 2, pch = c(15:19, 8, 11, 12), col = "Dark2", ref.x = 0,

xlim = c(-0.3, 0.3), ylom = c(0, NA))

## ----modMax, results='asis'----------------------------------------------

print(xtable(modStats(stats, obs = "max.daily.obs", mod = "max.daily.mod",

type = c("site.type", "data"), rank= "data"),

caption = "Summary statistics for the maximum daily mean \\ozone concentration.",

label = "tab:modStatsMaxDailyO3"),

size = "scriptsize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----maxDailyPointrange,w=8,h=5,out.width='0.8\\textwidth'---------------

tmp <- with(stats, aggregate(max.daily.mod, list(site = site, type = site.type), range))

tmp <- data.frame(tmp[, c(1, 2)], as.data.frame(tmp[, 3]))

tmp[, "obs"] <- with(stats, aggregate(max.daily.obs, list(site = site, type = site.type), mean))[, 3]

names(tmp)[3:4] <- c("ymin", "ymax")

ggplot(tmp, aes(site, obs, ymin = ymin, ymax = ymax, col = type, shape = type)) +

geom_pointrange(size =1) +

ylim(0, 200) + ylab(quickText("o3 (ug/m3)")) +
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theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5))

## ----funDateMod----------------------------------------------------------

## function to make it easy to extract a site/months, combine with o3Meas

combineAll <- function(site = "HAR", month = 6:7){

sub <- rbind.fill(AEA.base, AQUM.base, EMEP.base, Hert.base, KCL.base, NAME.base,

OSRM.base, WRFChem.base, ENSEMBLE.base)

sub <- sub[sub$site %in% site, ]

sub <- selectByDate(sub, month = month)

sub <- merge(sub, o3Meas, by = c("site", "date"), suffixes = c(".mod", ".obs"))

## make total nox available

sub <- transform(sub, NOx.obs = NOx, NOx.mod = NO2.mod + NO.mod,

OX.obs = O3.obs + NO2.obs, OX.mod = O3.mod + NO2.mod)

sub

}

## ----KC1CondEval,w=12,h=10,fig.keep='last', out.width='0.8\\textwidth'----

tmp <- merge(subset(all.data, site == "KC1"), subset(allMet, site == "Heathrow"),

by.x = c("date", "data"), by.y = c("date", "data.mod"))

conditionalEval(tmp, obs= "O3.obs", mod = "O3.mod", var.obs=c("NOx.obs", "ws.obs"),

var.mod =c("NOx.mod", "ws.mod"), statistic = "NMB", type = "data",

var.names=c("nox", "wind speed"))

## ----LHclusterTraj,w=7,h=5,dev='png',dpi=600, out.width='0.6\\textwidth'----

traj <- importTraj("lh", 2006)

clusters <- trajCluster(traj, method ="Angle", n.cluster=6, col = "Set1")

## merge data but not non-full years

tmp <- merge(subset(all.data, !data %in% c("WRF-Chem") & site == "LH"), clusters, by = "date")

## add measured values for reference

tmp1 <- subset(tmp, data == "KCL-CMAQ")

tmp1 <- transform(tmp1, O3.mod = O3.obs, data ="MEASURED")

o3Clust <- rbind(tmp, tmp1)

## ----LHcluster,w=12,h=13,fig.keep='last', out.width='1\\textwidth'-------

## put measured at top

o3Clust$data <- relevel(factor(o3Clust$data), ref = "MEASURED")

conditionalEval(o3Clust, obs = "O3.obs", mod = "O3.mod", statistic = "cluster",

type = "data", col.var = "Set1")

## ----AQindexMB,w=6,h=6,fig.show='hold', out.width='0.49\\textwidth'------

## celculate 8-hour running means, by model/site...

res <- selectByDate(all.data, month = 6:7)

res <- modStats(res, obs = "O3.roll.obs", mod = "O3.roll.mod",

type = c("index", "data"), rank.name="data")

scatterPlot(res, x = "index", y = "MB", group = "data", pch = 16, cex=2, col ="Set2", ref.y=0,

ylab = "MB (ug/m3)")

scatterPlot(res, x = "index", y = "NMB", group = "data", pch = 16, cex=2, col ="Set2", ref.y=0)

## ----modStatsurb, results='asis'-----------------------------------------

nox.stat <- modStats(subset(all.data, site %in% urban.sites), obs = "NOx.obs", mod = "NOx.mod",

type = "data", rank.name="data")

print(xtable(nox.stat,

caption = "Summary statistics for urban \\nox concentrations based on hourly data.",

label = "tab:modStatsUrbNOx"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----modStatrural, results='asis'----------------------------------------

print(xtable(modStats(subset(all.data, site %in% rural.sites), obs = "NOx.obs", mod = "NOx.mod",

type = "data", rank.name="data"),

caption = "Summary statistics for rural \\nox concentrations based on hourly data.",

label = "tab:modStatsRuralNOx"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----annualNOxNO2--------------------------------------------------------

annual <- aggregate(subset(all.data, select = c(NOx.obs, NOx.mod, NO2.obs, NO2.mod)),

subset(all.data, select = c(site, data)), mean, na.rm = TRUE)

annual$site.type <- "rural"

id <- which(annual$site %in% urban.sites)

annual$site.type[id] <- "urban"

## ----noxAnnual,w=8,h=4,out.width='1\\textwidth'--------------------------

annStat <- modStats(annual, obs = "NO2.obs", mod = "NO2.mod",

type = c("site.type", "data"), rank = "data")

scatterPlot(annStat, x = "NMB", y = "NMGE", group = "data", type = "site.type",

cex = 2, pch = c(15:19, 8, 11, 12), col = "Dark2", ref.x = 0)
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## ----timeVarNOx, fig.keep='none'-----------------------------------------

timeVarNOxUrb <- timeVariation(subset(all.data, site == "KC1"),

pollu = c("NOx.obs", "NOx.mod"),

type = "data", ylab = "nox (ppb)", difference = TRUE)

timeVarNOxRural <- timeVariation(subset(all.data, site == "HAR"),

pollu = c("NOx.obs", "NOx.mod"),

type = "data", ylab = "nox (ppb)", difference = TRUE)

## ----timeVarNOxDiurnal,w=10,h=6,out.width='0.9\\textwidth'---------------

plot(timeVarNOxUrb, subset = "hour")

## ----timeVarNOxDiurnalSeas,w=10,h=6,out.width='0.9\\textwidth'-----------

plot(timeVarNOxUrb, subset = "month")

## ----timeVarNOxDiurnalRural,w=10,h=6,out.width='0.9\\textwidth'----------

plot(timeVarNOxRural, subset = "hour")

## ----timeVarNOxDiurnalSeasRural,w=10,h=6,out.width='0.9\\textwidth'------

plot(timeVarNOxRural, subset = "month")

## ----modStatsurbNO2, results='asis'--------------------------------------

print(xtable(modStats(subset(all.data, site %in% urban.sites), obs = "NO2.obs", mod = "NO2.mod",

type = "data", rank.name ="data"),

caption = "Summary statistics for urban \\notwo concentrations.",

label = "tab:modStatsUrbNO2"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----modStatruralNO2, results='asis'-------------------------------------

print(xtable(modStats(subset(all.data, site %in% rural.sites), obs = "NO2.obs", mod = "NO2.mod",

type = "data", rank.name ="data"),

caption = "Summary statistics for rural \\notwo concentrations.",

label = "tab:modStatsRuralNO2"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----gridSize------------------------------------------------------------

## read grid data

gridDat <- read.csv("./data/grid Emissions.csv", header = TRUE)

gridDat$site.type[gridDat$site %in% urban.sites] <- "urban"

gridDat$site.type[gridDat$site %in% rural.sites] <- "rural"

## average emissions by location

gridRes <- ddply(gridDat, .(site.type, data), numcolwise(mean))

gridRes <- subset(gridRes, select = c(site.type, data, t.km2, x))

gridRes <- merge(gridRes, nox.stat, by = "data")

gridRes <- subset(gridRes, site.type == "urban")

## ----gridEffect,w=5,h=3.6,fig.show='hold', out.width='0.49\\textwidth'----

ggplot(gridRes, aes(x = MB, y = x, color = data, shape = data)) +

geom_point(size = 5) +

geom_smooth(aes(group = 1), method = "lm", se = FALSE) +

ylab("grid dimension (km)") +

xlab("MB (ppb)") +

ylim(0, 19) +

geom_vline(lty = 5)

ggplot(gridRes, aes(x = MB, y = t.km2, color = data, shape = data)) +

geom_point(size = 5) +

ylim(0, 60) +

geom_smooth(aes(group = 1), method = "lm", se = FALSE) +

ylab(quickText("nox emission (t/km2)")) +

xlab("MB (ppb)") +

geom_vline(lty = 5)

## ----calcO3ScenStats-----------------------------------------------------

prepScenStat <- function(mod = "KCL", name = "KCL-CMAQ", month = 1:12) {

## KCL

stats.base <- aqStats(transform(selectByDate(get(paste(mod, ".base", sep = "")),

month = month), O3 = O3 * 2),

pollutant = "O3")

stats.S1 <- aqStats(transform(selectByDate(get(paste(mod, ".S1", sep = "")), month = month)

, O3 = O3 * 2),

pollutant = "O3")

names(stats.S1) <- paste(names(stats.S1), ".S1", sep = "")

stats.S1[, 3:16] <- stats.S1[, 3:16] - stats.base[, 3:16]

stats.S2 <- aqStats(transform(selectByDate(get(paste(mod, ".S2", sep = "")), month = month)

, O3 = O3 * 2),

pollutant = "O3")
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names(stats.S2) <- paste(names(stats.S2), ".S2", sep = "")

stats.S2[, 3:16] <- stats.S2[, 3:16] - stats.base[, 3:16]

stats.S3 <- aqStats(transform(selectByDate(get(paste(mod, ".S3", sep = "")), month = month)

, O3 = O3 * 2),

pollutant = "O3")

names(stats.S3) <- paste(names(stats.S3), ".S3", sep = "")

stats.S3[, 3:16] <- stats.S3[, 3:16] - stats.base[, 3:16]

stats.S4 <- aqStats(transform(selectByDate(get(paste(mod, ".S4", sep = "")), month = month),

O3 = O3 * 2),

pollutant = "O3")

names(stats.S4) <- paste(names(stats.S4), ".S4", sep = "")

stats.S4[, 3:16] <- stats.S4[, 3:16] - stats.base[, 3:16]

res <- data.frame(stats.base, stats.S1, stats.S2, stats.S3, stats.S4)

res[, "data"] <-name

res

}

stats.KCL <- prepScenStat(mod = "KCL", name = "KCL-CMAQ")

stats.AEA <- prepScenStat(mod = "AEA", name = "AEA-CMAQ")

stats.Hert <- prepScenStat(mod = "Hert", name = "Hert-CMAQ")

stats.EMEP <- prepScenStat(mod = "EMEP", name = "EMEP4UK")

stats.OSRM <- prepScenStat(mod = "OSRM", name = "OSRM")

stats.NAME <- prepScenStat(mod = "NAME", name = "NAME")

stats.AQUM <- prepScenStat(mod = "AQUM", name = "AQUM")

stats.ENSEMBLE <- prepScenStat(mod = "ENSEMBLE", name = "ENSEMBLE")

stats.scen <- rbind.fill(stats.KCL, stats.AEA, stats.Hert, stats.EMEP, stats.OSRM,

stats.NAME, stats.AQUM, stats.ENSEMBLE)

stats.scen$site.type <- "rural"

stats.scen$site.type[which(stats.scen$site %in% urban.sites)] <- "urban"

## ----tableScenMean,results='asis', cache=FALSE, fig.align='default', echo=FALSE----

res <- ddply(subset(stats.scen, select = c(data,site.type, mean.S1, mean.S2, mean.S3, mean.S4)),

.(site.type, data), numcolwise(mean))

names(res)[3:6] <- paste("S", 1:4, sep = "")

print(xtable(res, digits =1,

caption = "Summary changes in annual mean \\ozone

concentrations across all receptors by model for 2006 for annual mean concentrations (\\ug).",

label = "tab:ScenMean"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----meanO3S1,w=13,h=5,out.width='1\\textwidth'--------------------------

## re-order by median

ggplot(stats.scen, aes(x = reorder(site, mean.S1, FUN = "median"), y = mean.S1)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y=mean.S1, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (ug/m3)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales = "free_x")

## ----meanO3S2,w=13,h=5,out.width='1\\textwidth'--------------------------

## re-order by median

ggplot(stats.scen, aes(x = reorder(site, mean.S2, FUN = "median"), y = mean.S2)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = mean.S2, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (ug/m3)")) +

scale_shape_manual(values = c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales = "free_x")

## ----meanO3S3,w=13,h=5,out.width='1\\textwidth'--------------------------

## re-order by median

ggplot(stats.scen, aes(x = reorder(site, mean.S3, FUN = "median"), y = mean.S3)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = mean.S3, color = data, shape = data), size = 4,
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position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (ug/m3)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales = "free_x")

## ----meanO3S4,w=13,h=5,out.width='1\\textwidth'--------------------------

ggplot(stats.scen, aes(x = reorder(site, mean.S4, FUN = "median"), y = mean.S4)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = mean.S4, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (ug/m3)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales = "free_x")

## ----tableScenRoll100,results='asis', cache=FALSE, fig.align='default', echo=FALSE----

res <- ddply(subset(stats.scen, select = c(data, site.type, roll.8.O3.gt.100.S1,

roll.8.O3.gt.100.S2, roll.8.O3.gt.100.S3,

roll.8.O3.gt.100.S4)), .(site.type, data),

numcolwise(mean))

names(res)[3:6] <- paste("S", 1:4, sep = "")

print(xtable(res, digits = 1,

caption = "Summary changes in number of days with a daily maximum of running 8-hour means $>$100~\\ug \\ozone across all receptors by model for 2006. Concentration values are given in \\ug.",

label = "tab:ScenMaxRoll100"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----roll100O3S1,w=13,h=5,out.width='1\\textwidth'-----------------------

ggplot(stats.scen, aes(x = reorder(site, roll.8.O3.gt.100.S1, FUN = "median"),

y = roll.8.O3.gt.100.S1)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = roll.8.O3.gt.100.S1, color = data, shape = data),

size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (days)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales = "free_x")

## ----roll100O3S2,w=13,h=5,out.width='1\\textwidth'-----------------------

ggplot(stats.scen, aes(x = reorder(site, roll.8.O3.gt.100.S2, FUN = "median"),

y = roll.8.O3.gt.100.S2)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = roll.8.O3.gt.100.S2, color = data, shape = data),

size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (days)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales = "free_x")

## ----roll100O3S3,w=13,h=5,out.width='1\\textwidth'-----------------------

ggplot(stats.scen, aes(x = reorder(site, roll.8.O3.gt.100.S3, FUN = "median"),

y = roll.8.O3.gt.100.S3)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = roll.8.O3.gt.100.S3, color = data, shape = data),

size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (days)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +
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theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales = "free_x")

## ----roll100O3S4,w=13,h=5,out.width='1\\textwidth'-----------------------

ggplot(stats.scen, aes(x = reorder(site, roll.8.O3.gt.100.S4, FUN = "median"),

y = roll.8.O3.gt.100.S4)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = roll.8.O3.gt.100.S4, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (days)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales = "free_x")

## ----tableScenMaxdaily,results='asis', cache=FALSE, fig.align='default', echo=FALSE----

res <- ddply(subset(stats.scen, select = c(data, site.type, max.daily.S1, max.daily.S2,

max.daily.S3, max.daily.S4)), .(site.type, data),

numcolwise(mean))

names(res)[3:6] <- paste("S", 1:4, sep = "")

print(xtable(res, digits = 1,

caption = "Summary changes in maximum daily \\ozone concentration across all receptors by model for 2006. Concentration values are given in \\ug.",

label = "tab:ScenMaxDaily"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----MaxDailyS1,w=13,h=5,out.width='1\\textwidth'------------------------

ggplot(stats.scen, aes(x = reorder(site, max.daily.S1, FUN = "median"),

y = max.daily.S1)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = max.daily.S1, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (ug/m3)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales = "free_x")

## ----MaxDailyS4,w=13,h=5,out.width='1\\textwidth'------------------------

ggplot(stats.scen, aes(x = reorder(site, max.daily.S4, FUN = "median"),

y = max.daily.S4)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = max.daily.S4, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (ug/m3)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales = "free_x")

## ----AOT40S1,w=13,h=5,out.width='1\\textwidth'---------------------------

ggplot(stats.scen, aes(x = reorder(site, AOT40.S1, FUN = "median"), y = AOT40.S1)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = AOT40.S1, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (ug/m3.hours)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales ="free_x")

## ----AOT40S2,w=13,h=5,out.width='1\\textwidth'---------------------------

ggplot(stats.scen, aes(x = reorder(site, AOT40.S2, FUN = "median"), y = AOT40.S2)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = AOT40.S2, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +
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ylab(quickText("delta.o3 (ug/m3.hours)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales ="free_x")

## ----AOT40S3,w=13,h=5,out.width='1\\textwidth'---------------------------

ggplot(stats.scen, aes(x = reorder(site, AOT40.S3, FUN = "median"), y = AOT40.S3)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = AOT40.S3, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (ug/m3.hours)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales ="free_x")

## ----AOT40S4,w=13,h=5,out.width='1\\textwidth'---------------------------

ggplot(stats.scen, aes(x = reorder(site, AOT40.S4, FUN = "median"), y = AOT40.S4)) +

geom_boxplot(fill = "white") +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y = AOT40.S4, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (ug/m3.hours)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5)) +

facet_grid(~ site.type, scales ="free_x")

## ----JulyO3, w=6, h=3, out.width='0.9\\textwidth'------------------------

timePlot(selectByDate(subset(o3Meas, site == "HAR"), month = 7), poll="O3",

ylab = "[O3] (ppb)", key = FALSE)

## ----JulyTraj------------------------------------------------------------

traj <- importTraj("har", 2006)

## merge with measurements

traj <- merge(traj, subset(o3Meas, site == "HAR"), by = "date")

## intervals of O3

traj$interval <- cut(traj$O3, breaks = c(0, 25, 50, 105), labels = c("0 to 25", "25 to 50", ">50"))

traj$day <- as.Date(traj$date)

## ----JulyTrajPlot,w=10,h=4, dev='png', dpi=600, out.width='1\\textwidth'----

trajPlot(selectByDate(traj, month =7), plot.type = "l", poll = "O3", lwd = 2,

type = "interval", col = "jet", layout = c(3, 1), main = "")

## ----indicatorFun, message=FALSE, results='hide'-------------------------

## prepare indicator; takes NOx and VOC control data

indPrep <- function(base, noxCont, vocCont, month = 7, hour = 15){

model <- unique(base$data)

base <- selectByDate(base, month = month, hour = hour)

noxCont <- selectByDate(noxCont, month = month, hour = hour)

vocCont <- selectByDate(vocCont, month = month, hour = hour)

tmp <- merge(base, noxCont, by = c("date", "site"))

tmp <- subset(tmp, select = c(date, site, O3.x, O3.y, NO.x, NO2.x, NOy.x))

tmp <- transform(tmp, delta.O3 = O3.x - O3.y, NOx = NO.x + NO2.x, O3 = O3.x, control = "NOx control")

names(tmp)[7] <- "NOy"

tmp <- subset(tmp, select = c(date, site, O3, delta.O3, NOx, NOy, control))

tmp1 <- merge(base, vocCont, by = c("date", "site"))

tmp1 <- subset(tmp1, select = c(date, site, O3.x, O3.y, NO.x, NO2.x, NOy.x))

tmp1 <- transform(tmp1, delta.O3 = O3.x - O3.y, NOx = NO.x + NO2.x, O3 = O3.x, control = "VOC control")

names(tmp1)[7] <- "NOy"

tmp1 <- subset(tmp1, select = c(date, O3, site, delta.O3, NOx, NOy, control))

tmp <- rbind.fill(tmp, tmp1)

tmp <- transform(tmp, ind = O3 / (NOy - NOx), NOz = NOy - NOx)

tmp$data <- model

tmp

}

AEA.ind <- indPrep(AEA.base, AEA.S3, AEA.S4)

AQUM.ind <- indPrep(AQUM.base, AQUM.S3, AQUM.S4)

EMEP.ind <- indPrep(EMEP.base, EMEP.S3, EMEP.S4)

Hert.ind <- indPrep(Hert.base, Hert.S3, Hert.S4)

KCL.ind <- indPrep(KCL.base, KCL.S3, KCL.S4)

NAME.ind <- indPrep(NAME.base, NAME.S3, NAME.S4)

OSRM.ind <- indPrep(OSRM.base, OSRM.S3, OSRM.S4)

ENSEMBLE.ind <- indPrep(ENSEMBLE.base, ENSEMBLE.S3, ENSEMBLE.S4)
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## import PTM results

ptm.ind <- import("./data/PTM.csv")

ptm.ind$data <- as.character(ptm.ind$data)

ind.res <- rbind.fill(AEA.ind, AQUM.ind, EMEP.ind, Hert.ind, KCL.ind, NAME.ind, OSRM.ind,

ptm.ind, ENSEMBLE.ind)

## ----SillmanInd,w=8,h=9,out.width='0.8\\textwidth'-----------------------

scatterPlot(subset(ind.res, ind >= 0), x = "ind", y = "delta.O3", group="control",

pch = c(16, 4), cex = c(0.5, 1),

type = "data", xlim = c(0, 25), ylim = c(-20, 20), ylab = "o3 reduction (ppb)",

xlab = expression(frac(O [3], NO[y] - NO[x])), smooth =T, ci = F,

key.position="bottom", layout = c(3, 3))

## ----SillmanIndHar,w=8,h=9,out.width='0.8\\textwidth'--------------------

scatterPlot(subset(ind.res, site == "HAR" & ind >0), x = "ind", y = "delta.O3", group="control",

pch = c(16, 17),

type = "data", xlim = c(0, 25), ylim = c(-20, 20), ylab = "o3 reduction (ppb)",

xlab = expression(frac(O [3], NO[y] - NO[x])), smooth =T, ci = F, cex = 2,

key.position="bottom", layout = c(3, 3))

## ----julyStats-----------------------------------------------------------

jul.KCL <- prepScenStat(mod = "KCL", name = "KCL-CMAQ", month = 7)

jul.AEA <- prepScenStat(mod = "AEA", name = "AEA-CMAQ", month = 7)

jul.Hert <- prepScenStat(mod = "Hert", name = "Hert-CMAQ", month = 7)

jul.EMEP <- prepScenStat(mod = "EMEP", name = "EMEP4UK", month = 7)

jul.OSRM <- prepScenStat(mod = "OSRM", name = "OSRM", month = 7)

jul.NAME <- prepScenStat(mod = "NAME", name = "NAME", month = 7)

jul.AQUM <- prepScenStat(mod = "AQUM", name = "AQUM", month = 7)

jul.ENSEMBLE <- prepScenStat(mod = "ENSEMBLE", name = "ENSEMBLE", month = 7)

##jul.WRFChem <- prepScenStat(mod = "WRF-Chem", name = "WRF-Chem", month = 7)

jul.scen <- rbind.fill(jul.KCL, jul.AEA, jul.Hert, jul.EMEP, jul.OSRM,

jul.NAME, jul.AQUM, jul.ENSEMBLE)

## select what we need

few.scen <- subset(jul.scen, site %in% c("HAR", "LH", "ROCH", "WFEN"))

few.scen <- few.scen[, c(1, grep("max.rolling.8", names(few.scen)), 81)]

names(few.scen)[3:6] <- c("S1", "S2", "S3", "S4")

few.scen <- melt(few.scen)

few.scen <- subset(few.scen, variable != "max.rolling.8")

urb.scen <- subset(jul.scen, site %in% c("CLL2", "KC1", "LON6", "MAN4"))

urb.scen <- urb.scen[, c(1, grep("max.rolling.8", names(urb.scen)), 81)]

names(urb.scen)[3:6] <- c("S1", "S2", "S3", "S4")

urb.scen <- melt(urb.scen)

urb.scen <- subset(urb.scen, variable != "max.rolling.8")

## ----Julyroll8,w=10,h=5,out.width='1\\textwidth'-------------------------

few.scen$site <- reorder(few.scen$site, few.scen$value,

FUN = median)

ggplot(few.scen, aes(x = site, y=value)) +

geom_boxplot() +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y=value, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (ug/m3)")) +

scale_shape_manual(values =c(15:19, 8, 11, 12)) +

xlab("site") +

facet_grid(~ variable) +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5))

## ----Julyroll8Urb,w=10,h=5,out.width='1\\textwidth'----------------------

urb.scen$site <- reorder(urb.scen$site, urb.scen$value,

FUN = median)

ggplot(urb.scen, aes(x = site, y=value)) +

geom_boxplot() +

geom_hline(yintercept = 0, lty = 5) +

geom_point(aes(x = site, y=value, color = data, shape = data), size = 4,

position = position_dodge(.5)) +

scale_color_brewer(palette = "Dark2") +

ylab(quickText("delta.o3 (ug/m3)")) +

scale_shape_manual(values= c(15:19, 8, 11, 12)) +

xlab("site") +

facet_grid(~ variable) +

theme(axis.text.x = element_text(angle= -90, hjust = 0, vjust = 0.5))

## ----dailySensitivity----------------------------------------------------

## function to work out if max rolling 8 is VOC or NOx senstive

prepRollStat <- function(mod = "KCL", name = "KCL-CMAQ", month = 1:12) {

stats.base <- selectByDate(get(paste(mod, ".base", sep = "")), month = month)
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stats.base <- subset(stats.base, select = c(site, date, O3))

stats.base <- rollingMean(stats.base, pollutant = "O3", alight = "right")

stats.base <- timeAverage(stats.base, "day", data.thresh = 75, statistic = "max")

stats.base <- stats.base[, -3] ## don't need hourly O3

names(stats.base)[3] <- "base"

stats.S3 <- selectByDate(get(paste(mod, ".S3", sep = "")), month = month)

stats.S3 <- subset(stats.S3, select = c(site, date, O3))

stats.S3 <- rollingMean(stats.S3, pollutant = "O3", alight = "right")

stats.S3 <- timeAverage(stats.S3, "day", data.thresh = 75, statistic = "max")

stats.S3 <- stats.S3[, -3] ## don't need hourly O3

names(stats.S3)[3] <- "S3"

stats.S4 <- selectByDate(get(paste(mod, ".S4", sep = "")), month = month)

stats.S4 <- subset(stats.S4, select = c(site, date, O3))

stats.S4 <- rollingMean(stats.S4, pollutant = "O3", alight = "right")

stats.S4 <- timeAverage(stats.S4, "day", data.thresh = 75, statistic = "max")

stats.S4 <- stats.S4[, -3] ## don't need hourly O3

names(stats.S4)[3] <- "S4"

res <-merge(stats.base, stats.S3, by = c("site", "date"))

res <-merge(res, stats.S4, by = c("site", "date"))

res[, "data"] <- name

res

}

roll.KCL <- prepRollStat(mod = "KCL", name = "KCL-CMAQ", month = 7)

roll.AEA <- prepRollStat(mod = "AEA", name = "AEA-CMAQ", month = 7)

roll.Hert <- prepRollStat(mod = "Hert", name = "Hert-CMAQ", month = 7)

roll.EMEP <- prepRollStat(mod = "EMEP", name = "EMEP4UK", month = 7)

roll.OSRM <- prepRollStat(mod = "OSRM", name = "OSRM", month = 7)

roll.NAME <- prepRollStat(mod = "NAME", name = "NAME", month = 7)

roll.AQUM <- prepRollStat(mod = "AQUM", name = "AQUM", month = 7)

roll.ENSEMBLE <- prepRollStat(mod = "ENSEMBLE", name = "ENSEMBLE", month = 7)

roll.res <- rbind.fill(roll.KCL, roll.AEA, roll.Hert, roll.EMEP, roll.OSRM,

roll.NAME, roll.AQUM, roll.ENSEMBLE)

## VOC or NOx dominated

roll.res$sens <- ifelse((roll.res$S3 - roll.res$base) < (roll.res$S4 - roll.res$base),

"NOx", "NOx")

## add a numeric value calendarPlot can work with

roll.res$bin <- ifelse((roll.res$S3 - roll.res$base) < (roll.res$S4 - roll.res$base),

1, 0)

## ----JulySens,w=4,h=4,fig.show='hold',out.width='0.32\\textwidth'--------

plotCal <- function(model) {

calendarPlot(subset(roll.res, site == "HAR" & data == model),

pollutant = "bin", breaks = c(-1, 0.1, 1),

labels = c("VOC sensitive", "NOx sensitive"),

year = 2006, cols = "hue", main = model)

}

l_ply(c("AQUM", "KCL-CMAQ", "EMEP4UK", "AEA-CMAQ", "Hert-CMAQ", "NAME", "OSRM", "ENSEMBLE"),

plotCal)

## also show measured values

o3HAR <- subset(o3Meas, site.name == "Harwell")

o3HAR <- selectByDate(o3HAR, month = 7)

o3HAR <- rollingMean(o3HAR, pollutant = "O3", alight = "right")

o3HAR <- timeAverage(o3HAR, "day", statistic = "max")

calendarPlot(o3HAR, pollutant = "O3", year = 2006, annotate = "value", lim = 50,

col.lim = c("black","grey"),

main = "Measured ozone", col = "increment")

## ----sensPlot,w=12,h=4,out.width='1\\textwidth'--------------------------

nox.sens <- ddply(roll.res, .(site, data, sens), numcolwise(sum), na.rm = TRUE)

nox.sens <- subset(nox.sens, sens == "NOx", select = c(data, site, bin))

names(nox.sens) <- c("model", "site", "days")

nox.sens$days <- nox.sens$days - 15.5 ## for more effective plotting

ggplot(nox.sens, aes(x = site, y= model, fill = days)) +

geom_tile() +

scale_fill_gradientn(colours = openColours("PuOr", 31)) +

theme(legend.position="none")

## ----sensMap,w=8,h=8,dev='png', dpi=600, out.width='1\\textwidth'--------

nox.sens <- merge(nox.sens, meta, by.x = "site", by.y = "code")

scatterPlot(subset(nox.sens, site.type == "Rural Background"),

x = "longitude",y = "latitude", z = "days",

map = TRUE, cex =2, map.alpha = 0.1, col = "RdYlBu",

type = "model", main = NULL, key = FALSE)

## ----UKEuropeSens--------------------------------------------------------

## function to work out if max rolling 8 is VOC or NOx senstive
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prepUKEurStat <- function(mod = "KCL", name = "KCL-CMAQ", month = 1:12) {

stats.base <- selectByDate(get(paste(mod, ".base", sep = "")), month = month)

stats.base <- subset(stats.base, select = c(site, date, O3))

stats.base <- rollingMean(stats.base, pollutant = "O3", alight = "right")

stats.base <- timeAverage(stats.base, "day", data.thresh = 75, statistic = "max")

stats.base <- stats.base[, -3] ## don't need hourly O3

names(stats.base)[3] <- "base"

## S1 is UK + Europe

stats.S1 <- selectByDate(get(paste(mod, ".S1", sep = "")), month = month)

stats.S1 <- subset(stats.S1, select = c(site, date, O3))

stats.S1 <- rollingMean(stats.S1, pollutant = "O3", alight = "right")

stats.S1 <- timeAverage(stats.S1, "day", data.thresh = 75, statistic = "max")

stats.S1 <- stats.S1[, -3] ## don't need hourly O3

names(stats.S1)[3] <- "S1"

## S2 is UK only

stats.S2 <- selectByDate(get(paste(mod, ".S2", sep = "")), month = month)

stats.S2 <- subset(stats.S2, select = c(site, date, O3))

stats.S2 <- rollingMean(stats.S2, pollutant = "O3", alight = "right")

stats.S2 <- timeAverage(stats.S2, "day", data.thresh = 75, statistic = "max")

stats.S2 <- stats.S2[, -3] ## don't need hourly O3

names(stats.S2)[3] <- "S2"

res <-merge(stats.base, stats.S1, by = c("site", "date"))

res <-merge(res, stats.S2, by = c("site", "date"))

res[, "data"] <- name

res

}

S1S2.KCL <- prepUKEurStat(mod = "KCL", name = "KCL-CMAQ", month = 7)

S1S2.AEA <- prepUKEurStat(mod = "AEA", name = "AEA-CMAQ", month = 7)

S1S2.Hert <- prepUKEurStat(mod = "Hert", name = "Hert-CMAQ", month = 7)

S1S2.EMEP <- prepUKEurStat(mod = "EMEP", name = "EMEP4UK", month = 7)

S1S2.OSRM <- prepUKEurStat(mod = "OSRM", name = "OSRM", month = 7)

S1S2.NAME <- prepUKEurStat(mod = "NAME", name = "NAME", month = 7)

S1S2.AQUM <- prepUKEurStat(mod = "AQUM", name = "AQUM", month = 7)

S1S2.ENSEMBLE <- prepUKEurStat(mod = "ENSEMBLE", name = "ENSEMBLE", month = 7)

S1S2.res <- rbind.fill(S1S2.KCL, S1S2.AEA, S1S2.Hert, S1S2.EMEP, S1S2.OSRM,

S1S2.NAME, S1S2.AQUM, S1S2.ENSEMBLE)

## VOC or NOx dominated

S1S2.res$sens <- ifelse((S1S2.res$S1 - S1S2.res$base) < (S1S2.res$S2 - S1S2.res$base),

"Europe", "UK")

## add a numeric value calendarPlot can work with

S1S2.res$bin <- ifelse((S1S2.res$S1 - S1S2.res$base) < (S1S2.res$S2 - S1S2.res$base),

1, 0)

## ----UKsensPlot,w=12,h=4,out.width='1\\textwidth'------------------------

UK.sens <- ddply(S1S2.res, .(site, data, sens), numcolwise(sum), na.rm = TRUE)

UK.sens <- subset(UK.sens, sens == "Europe", select = c(data, site, bin))

names(UK.sens) <- c("model", "site", "days")

ggplot(UK.sens, aes(x = site, y = model, fill = days)) +

geom_tile() +

scale_fill_gradientn(colours = openColours("default", 31)) +

geom_text(aes(label = days), color = "grey60")

## ----sensEmi,w=5,h=3.6,out.width='0.6\\textwidth'------------------------

## simple NOx-VOC senstivity vs. emissions

## make data frame

sensEmi <- data.frame(model = c("KCL-CMAQ", "NAME", "AQUM", "Hert-CMAQ", "AEA-CMAQ"),

ratio = c(0.63, 1.70, 1.40, 0.39, 0.57),

days = c(17, 4, 5, 24, 17))

library(MASS)

library(splines)

ggplot(sensEmi, aes(ratio, days, color = model, shape = model)) +

geom_rect(aes(NULL, NULL), alpha = 0.02, xmin = -10, xmax = 2, ymin = 0,

ymax = 15.5, fill="blue", color = "transparent") +

geom_rect(aes(NULL, NULL), alpha = 0.02, xmin = -10, xmax = 2, ymin = 15.5,

ymax = 31, fill = "green", color = "transparent") +

geom_text(x = 0.5, y = 4, label = "mostly VOC senstive", size = 4, color = "grey30") +

geom_text(x = 1.2, y = 22, label = "mostly NOx senstive", size = 4, color = "grey30") +

geom_point(size = 5) + ylim(0, 31) +

xlim(0, 1.7) +

xlab(quickText("NOx/VOC European emissions ratio")) +

ylab(quickText("days when nox-senstive")) +

stat_smooth(aes(group=1), method = "lm",formula = y ~ ns(x, 2), size = 1, se = FALSE)

## ----metSites,w=7,h=7,out.width='.65\\textwidth',message=FALSE-----------

## codes to prepare regional data
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## map of met sites

metLoc <- read.csv("./data/metSites.csv", header = TRUE)

GoogleMapsPlot(metLoc, latitude = "latitude", longitude = "longitude", col = "red",

labels = list(labels = "Site", col = "red", cex=1.2, pos = 1, font = 2),

cex = 1.5, maptype = "roadmap", verbose = 0)

## ----modStatsWS, results='asis'------------------------------------------

print(xtable(modStats(selectByDate(allMet, month = 7), obs = "ws.obs",

mod = "ws.mod", type = "data.mod", rank.name = "data.mod"),

caption = "Summary statistics for model wind speed performance across all sites for July 2006.",

label = "tab:modStatsWSJuly"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----modStatsWSall, results='asis'---------------------------------------

print(xtable(modStats(allMet, obs = "ws.obs", mod = "ws.mod",

type = "data.mod", rank.name = "data.mod"),

caption = "Summary statistics for model wind speed performance across all sites for 2006.",

label = "tab:modStatsWSAll"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----wsEMEP,w=8,h=8,out.width='0.6\\textwidth',cache=TRUE----------------

ggplot(subset(allMet, site %in% c("Heathrow", "Church Fenton", "Weybourne", "Lossiemouth")),

aes(data.mod, ws.mod)) +

geom_boxplot(outlier.shape = NA) +

geom_boxplot(aes(data.obs, ws.obs, fill = data.obs), outlier.shape = NA) +

coord_cartesian(ylim = c(-0.2, 13.5)) +

opts(legend.position = "bottom", axis.text.x = theme_text(angle= -90, hjust = 0)) +

facet_wrap( ~ site) +

ylab(quickText("wind speed (m/s)"))

## ----taylorWS,w=10,h=8,out.width='1\\textwidth',cache=TRUE---------------

TaylorDiagram(selectByDate(allMet, month =7), obs = "ws.obs", mod = "ws.mod",

group = "site", norm = TRUE, type = "data.mod")

## ----wsCondQuant,w=10,h=8,out.width='1\\textwidth'-----------------------

conditionalQuantile(allMet, obs = "ws.obs", mod = "ws.mod",

type = "data.mod", xlab = "modelled wind speed (m/s)",

ylab = "measured wind speed (m/s)")

## ----diurnalws, fig.keep='none'------------------------------------------

tmp <- timeVariation(allMet, pollutant=c("ws.obs", "ws.mod"),

type = "data.mod", ylab = "wind speed (m/s)")

## ----wsDiurnal,w=10,h=6,out.width='0.9\\textwidth'-----------------------

plot(tmp, subset = "hour")

## ----metSub,w=9,h=6,out.width='1\\textwidth'-----------------------------

pollutionRose(subset(allMet, site == "Heathrow" & data.mod != "EMEP4UK"),

ws = "ws.obs", wd = "wd.obs",

ws2 = "ws.mod", wd2 = "wd.mod", type = "data.mod", grid = 5,

angle = 3)

## ----modStatstemp, results='asis'----------------------------------------

print(xtable(modStats(selectByDate(allMet, month = 7), obs = "temp.obs",

mod = "temp.mod", type = "data.mod", rank.name = "data.mod"),

caption = "Summary statistics for model ambient temperature performance across all sites for July 2006.",

label = "tab:modStatsTempJuly"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----modStatstempAll, results='asis'-------------------------------------

print(xtable(modStats(allMet, obs = "temp.obs", mod = "temp.mod",

type = "data.mod", rank.name = "data.mod"),

caption = "Summary statistics for model ambient temperature performance across all sites for 2006.",

label = "tab:modStatsTempAll"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----taylorTemp,w=10,h=8,out.width='1\\textwidth'------------------------

TaylorDiagram(selectByDate(allMet, month =7), obs = "temp.obs", mod = "temp.mod",

group = "site", norm = TRUE, type = "data.mod")

## ----tempCondQuant,w=10,h=8,out.width='1\\textwidth'---------------------

conditionalQuantile(allMet, obs = "temp.obs", mod = "temp.mod",
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type = "data.mod", xlab = "modelled temp (degreesC)", ylab = "measured temp (degreesC)")

## ----diurnalTemp, fig.keep='none'----------------------------------------

tmp <- timeVariation(allMet, pollutant=c("temp.obs", "temp.mod"),

type = "data.mod", ylab = "ambient temp (degreesC)")

## ----tempDiurnal,w=10,h=6,out.width='0.9\\textwidth'---------------------

plot(tmp, subset = "hour")

## ----modStatsRH, results='asis'------------------------------------------

print(xtable(modStats(selectByDate(allMet, month = 7), obs = "rh.obs",

mod = "rh.mod", type = "data.mod", rank.name = "data.mod"),

caption = "Summary statistics for model relative humidity performance across all sites for July 2006.",

label = "tab:modStatsRHJuly"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----modStatsRHall, results='asis'---------------------------------------

print(xtable(modStats(allMet, obs = "rh.obs", mod = "rh.mod",

type = "data.mod", rank.name = "data.mod"),

caption = "Summary statistics for model relative humidity performance across all sites in 2006.",

label = "tab:modStatsRHAll"),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----taylorRH,w=10,h=8,out.width='1\\textwidth'--------------------------

TaylorDiagram(selectByDate(allMet, month =7), obs = "rh.obs", mod = "rh.mod",

group = "site", norm = TRUE, type = "data.mod")

## ----rhCondQuant,w=10,h=8,out.width='1\\textwidth'-----------------------

conditionalQuantile(allMet, obs = "rh.obs", mod = "rh.mod",

type = "data.mod", xlab = "modelled relative humidity (%)",

ylab = "measured relative humidity (%)")

## ----BLHadd--------------------------------------------------------------

allHar <- combineAll("HAR", month= 1:12)

## merge with BLH

allHar <- merge(allHar, subset(BLH, site == "HAR"), by= c("date", "data"))

## ----timeVarBLH,fig.keep='none'------------------------------------------

plt <- timeVariation(allHar, pollutant = "BLH", group = "data", type = "season",

ci = FALSE, lwd= 3, ylab = "boundary layer height (m)",

cols = "Set2", key.columns = 3)

## ----timeVarBLHMonth,w=10,h= 4,out.width='1\\textwidth'------------------

plot(plt, subset= "hour")

## ----BLHcondNOx,w=12,h=8,fig.keep='last', out.width='1\\textwidth'-------

conditionalEval(allHar, obs = "NOx.obs", mod = "NOx.mod", type = "data",

statistic = "BLH", col.var ="Dark2")

## ----annualTaylor,w=5,h=5,out.width='0.6\\textwidth'---------------------

TaylorDiagram(stats, obs = "mean.obs", mod = "mean.mod",group = "data")

## ----roll8Taylor,w=5,h=5,out.width='0.6\\textwidth'----------------------

TaylorDiagram(stats, obs = "roll.8.O3.gt.100.obs", mod = "roll.8.O3.gt.100.mod",group = "data")
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