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Summary key points

General points

1. Five urban air quality models have been considered in this report: ADMS-Urban

from Cambridge Environmental Research Consultants (CERC); BRUTAL (Back-

ground, Roads and Urban Transport:modelling of Air quality and Limit values)

from Imperial College London, ERG-Toolkit and the KCL CMAQ-Urban from

King’s College London and the PCM (Pollution Climate Mapping) from Ricardo-

AEA. These models are all capable of predicting concentrations at the urban scale

and some at the regional scale. Predictions were made in London for a base year of

2008.

2. The models were evaluated for NOx, NO2, O3, PM10 and PM2.5 at a range of site

types from kerbside to urban background in London. Comparisons were also made

between the models including an assessment of surface areas above/below different

concentration thresholds.

3. The evaluation of all models against PM10 and PM2.5 concentrations is comprom-

ised by particle measurement issues. These issues include the variation in particle

mass by measurement technique (TEOM vs. FDMS vs. Partisol), the lack of reli-

able Partisol measurements during 2008 and a general lack of PM2.5 measurements.

For PM2.5, the difference in concentration resulting from measurement technique

is similar to the modelled concentration difference between the models.

4. Threshold-type statistics can be very difficult for models to predict well when

concentrations are close to the threshold and this is a trait common across all

pollutants. Only a small uncertainty in the predicted concentration can have

a large effect on the threshold statistic. This behaviour is seen for NO2 (hours

>200 µg m−3), O3 (days where the maximum rolling 8-hour mean is >100 µg m−3)

and PM10 (days >50 µg m−3). In addition, calculated exceedance areas are very

sensitive to small changes in concentration. While these statistics are relevant from

a health-evidence perspective they do not lend themselves to accurate prediction

by models.

5. While this work has not specifically considered emission inventories, it is clear there

are important differences between the NAEI (the National Atmospheric Emissions

Inventory) and LAEI (London Atmospheric Emissions Inventory), particularly

with respect to PM emissions e.g. assumptions related to vehicle non-exhaust

emissions. Furthermore, it is also clear that there are important differences in the

level of background PM10 and PM2.5 used in the models. Indeed, these issues in

many respects account for the largest differences between the models rather than

inherent differences in modelling approach per se.

6. Models that produce hourly predictions (ADMS-Urban and KCL CMAQ-Urban)

can be evaluated much more comprehensively compared with ‘annual’ models.

One of the principal advantages is checkingwhether thesemodels ‘get it right for the

right reason’. For example, it is possible to evaluate how well these models predict

the hourly NOx-NO2 relationship at a specific site, which can build confidence
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regarding their ability to also predict how concentrations of NO2 will change at a

particular site for a given reduction in NOx.

Source apportionment

7. The models produced concentration predictions by different source sectors and

these were aggregated by major source categories to determine the contributions

made by each source category to total annual mean concentrations.

8. The background (non-London) contribution is very important for PM10 and PM2.5.

There is however a relatively wide variation in this component, which has a strong

influence on the calculated surface area above different threshold concentrations.

The models use different approaches for calculating the background component e.g.

relying on other regional scale model output or deriving components from meas-

urements. Improved consistency between the models should therefore be possible

if agreement was reached on the magnitude and composition of the background

component.

9. For PM10 there are important differences between the models. At roadside sites

exhaust emissions contribute 9.1% for ADMS-Urban, 10.9% for BRUTAL, 8.6%

for the ERG-Toolkit and 14.7% for the PCM. These results imply that the effect-

iveness of measures aimed at reducing exhaust PM could vary widely depending

on the model used.

10. The most important difference between the models with respect to PM10 con-

centration relates to estimates of non-exhaust emissions. Non-exhaust emissions

include tyre and brake wear and particle resuspension. Not all of the models for

2008 provide estimates of all these components i.e. some lack an estimate of road

wear/resuspension. In this case the ERG-Toolkit suggests about two to three times

the contribution of the other models and a considerable fraction of the overall mean

PM10 concentration (29.1%) at roadside sites.

11. Many of the differences between the models (in particular for PM10 and PM2.5)

are therefore driven not by the model used but the assumptions concerning the

background component and the assumptions in the inventories e.g. the contribution

from non-exhaust vehicle emissions. There is therefore considerable scope for

minimising the differences between the models by using a consistent set of input

data.

Exceedance areas

12. The results suggest the models can provide comparatively large differences in the

calculated exceedance areas across London i.e. the surface area above certain

concentration thresholds. The models are broadly split into those that provide km2

estimates of concentrations with roads considered separately (PCM and BRUTAL)

and those that model at any geographic scale as a continuum (ADMS-Urban and

ERG-Toolkit). Outputs from the latter two models have been down-sampled to

1 km2 means to allow as consistent a comparison as possible across all models with

the data available.
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13. In terms of area of NO2 >40 µg m−3 the models provide a wide range of values:

ADMS-Urban = 156, BRUTAL = 70, ERG-Toolkit = 295 and PCM = 66 km2.

Furthermore, these exceedance areas are very sensitive to small changes in predicted

concentration. For instance, a ±10% increase/decrease in predicted concentration

for ADMS-Urban gives a range in exceedance area from 62 to 312 km2 i.e. the

range encompasses the range predicted across all models. The sensitivity of the

surface area calculated by the models to small changes in concentration is in part

due to the nature of threshold statistics where a small change in concentration close

to a threshold can have a large effect on the surface area calculated.

14. For PM10 and PM2.5 the surface areas above specific thresholds are very sensitive

to the model used. Specifically, the principal factor affecting the area calculations

is again the assumption concerning the background (non-London) contribution

made towards PM10 and PM2.5. For example, the ≈2 µg m−3 difference between

ADMS-Urban and the PCM model background concentration results in very

different exceedance area estimates: almost 100% of the surface area of London is

predicted to be above 20 µg m−3 for ADMS-Urban whereas ≈75% of the area of

London is predicted to be below 20 µg m−3 using the PCM.

15. It can be shown that data presented as km grid square means will tend to underes-

timate exceedance areas compared with more spatially resolved predictions. This

characteristic can be shown by down-sampling the models that provide spatially

detailed predictions. Taking ADMS-Urban as an example, the 1 km resolution

grid shows that 156 km2 exceed 40 µg m−3 annual mean NO2. If the grid resolution

is reduced to 100 m then it can be shown that 199 km2 exceed and for a 20 m

resolution 192 km2 exceed.

Effect of scenarios

16. On average the models give a very similar reduction in NOx due to a scenario

that reduces NOx emissions from road transport by 30% (19–22 µg m−3) based

on predictions at monitoring sites. However, the models give a wider range of

responses to NO2 concentrations from 6.4 µg m−3 (ADMS-Urban) to 11.1 µg m−3

(BRUTAL). The reductions in NO2 range from 12 to 21%. ADMS-Urban and

KCL CMAQ-Urban tend to give a smaller change in NO2 for a specific change in

NOx concentration and this is most notable for locations with higher concentrations

of NOx. Unlike the other models assessed, ADMS-Urban and KCLCMAQ-Urban

consider time-dependent chemical reactions on an hourly basis rather than using

empirical NOx-NO2-O3 relationships. These results imply that ADMS-Urban

and KCL CMAQ-Urban will tend to predict less of a change in NO2 for a given

intervention that reduces NOx compared with empirically-based models.

17. A 30% reduction in domestic, commercial and public NOx emissions reduces NO2

concentrations at the receptors considered by≈1.5 µg m−3 (3%) for ADMS-Urban,

ERG-Toolkit and the PCM but 4.5 µg m−3 (9%) for BRUTAL. Important factors

here are the release characteristics and immediate vertical dispersion close to the

source.

18. Reductions in exhaust PM10 emissions of 30% result in a relatively large range in

PM10 concentration reductions. These reductions will be driven more by inventory
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assumptions rather than differences in the modelling approaches used because as

noted above reductions in NOx are consistent across the models. Overall, the

models using the LAEI (ADMS-Urban, ERG-Toolkit and KCL CMAQ-Urban)

tend to show smaller changes in PM10 and PM2.5 concentration than those using

the NAEI (PCM and BRUTAL).

Analysis of hourly data

19. The models that predict hourly concentrations (ADMS-Urban and KCL CMAQ-

Urban) can be scrutinised in much more detail than models that only output annual

mean concentrations, which can lead to a better understanding of the underlying

reasons why the models behave as they do. The increased temporal output of these

models is important with respect to model evaluation.

20. ADMS-Urban and KCL CMAQ-Urban generally capture the non-linear rela-

tionship between NOx and NO2 very well across a wide range of site types and

NOx concentration. In addition, as noted in the analysis of NOx reduction scen-

arios, ADMS-Urban and KCL CMAQ-Urban yield similar reductions in NO2

concentration for a given reduction in NOx.

21. Comparison with measured values reveals that there are situations where sources

are likely absent or are misspecified in emission inventories highlighting that poor

model performance will on many occasions be due to inventory deficiencies rather

than model (dispersion/chemistry) limitations.

22. A comparison with a range of air quality metrics shows that ADMS-Urban and

KCL CMAQ-Urban perform similarly well. The most important difference in per-

formance is for the prediction of PM concentrations. KCL CMAQ-Urban, which

models the background PM component explicitly (rather than using an assumed

value based on ambient measurements) tends to underestimate PM10 and PM2.5

concentrations. However, this underestimate is common among regional-scale

models.

23. There are situations where the models fail to capture the complex mixing within

street canyons. While it is not expected ‘operational’-type models would perform

well at specific locations affected by complicated building layouts, analysis can help

highlight the implications of such limitations. At Marylebone Road for example,

ADMS-Urban andKCLCMAQ-Urban use some of the algorithms from theDanish

OSPM (Operational Street Pollution Model) canyon model. However, bivariate

polar plots and other analysis shows that as currently used, the modelling approach

fails to capture the important reversal of wind flow characteristic of street canyon

recirculation. As a consequence, the performance of these models with hourly data

is not good. However, these models do provide good estimates of annual mean

concentrations. It should be noted that exceedances of pollutants such as NO2

will increasingly be restricted to environments close to roads and therefore it will

become increasingly important that models perform well in these locations.

24. A brief analysis using the same techniques above applied to the OSPM model for

a street in Denmark does show the model performs well and captures the main
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recirculation effects. These results show that revisiting how OSPM is currently

implemented in these models could lead to much improved model performance.

25. The analysis of hourly air quality data using either observed meteorology from

Heathrow (as used in ADMS-Urban) or from the Weather Research Forecasting

(WRF) model results in very similar findings as far as wind speed and direction

dependences are concerned. These results suggest that the use of numerical weather

prediction models for the estimate of surface meteorological variables may provide

a useful means of model evaluation more widely across the UK.
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1 Introduction

1.1 Background

This report summarises the main finding of Phase 2 of the Defra Model Evaluation

Exercise. The analysis follows on from Phase 1 where the models were compared against

a large number of monitoring sites in London.1 The report focuses on the use of models

that consider urban air pollution, and specifically the prediction of NOx, NO2, O3, PM10

and PM2.5 concentrations. In Phase 1, the evaluations were focused on comparing simple

metrics such as annual means. Phase 2 builds on this analysis and extends Phase 1 to

consider a wider range of issues following input from the model groups. The comparisons

focus on London for a 2008 base year.

Model evaluations can cover an enormous range of issues and can involve very detailed

types of analysis. The main aims of this report are:

1. To quantify the source apportionment by major source categories for NOx, PM10

and PM2.5 at measurement sites across London and where possible to better under-

stand the background component of PM predictions.

2. To quantify the surface areas of London above certain threshold concentrations

for NOx, NO2, PM10 and PM2.5 to help understand the differences between the

models.

3. To quantify the effect of several emission change scenarios focusing on reducing

or increasing London emissions for transport and other sources. This aim should

help understand how the different model predictions of concentration respond to

changes in source emissions.

4. Finally, where models are able to predict hourly concentrations, to consider these

predictions in more detail to develop a better understanding of how the models

differ.

It should be stressed that while many useful comparisons can be made between the

models, there are limits to the analyses that can be undertaken before specific model

sensitivity runs are required e.g. to test the importance of emission assumptions on the

predictions. In particular the analysis contained in this report focuses on concentration

predictions and does not, for example, consider differences in the emission inventories

used. Nevertheless, the results contained in this report should provide a good indication

of the likely range in model performance from currently used urban modelling approaches.

Strictly speaking, the evaluations in this report consider different model systems, which

comprise inventories, dispersion models and other associated components.

The model evaluation of PM2.5 and PM10 is compromised by measurement issues.

There remains considerable doubt over PM10 and PM2.5 measurements and this makes

the evaluation of models difficult i.e. knowing which measurements are considered to be

‘correct’ and which should be used as the basis for model evaluation. For example, in the

recent AQEG report on PM2.5, transects in PM2.5 concentrations across London were

considered for the PCM and ADMS-Urban in which PM2.5 measurements were overlaid

1The Phase 1 report is available here: http://uk-air.defra.gov.uk/library/reports?report_id=

654.

http://uk-air.defra.gov.uk/library/reports?report_id=654 
http://uk-air.defra.gov.uk/library/reports?report_id=654 
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with Partisol and FDMSmeasurements (Figure 5.5 in AQEG (2012)2). The AQEGwork

showed that therewere differences of up to≈3 µgm−3 between the two instrument types at

background locations (for concentrations in the range 10–15 µg m−3). These differences

are large and are similar in magnitude to the differences between these two models.

However, more recent, long term and high time resolution compositional measurements

for many important species will be available through the NERC ClearfLo campaign for

2012. These new measurements could form the basis for a more comprehensive model

evaluation for particulate matter.

1.2 Analysis approaches

The analysis has been conducted using R software (R Core Team 2013) and an R package

called openair (D. C. Carslaw and Ropkins 2012). The document itself embeds R code

that generates all the tables, plots and statistics ‘on the fly’ using the approach of Xie (Xie

2013a; Xie 2013b). This is a dynamic reporting approach where the document must be

compiled in order to be produced. All the code used to generate the plots, tables etc. is

given in Appendix C, which itself is generated directly from the report automatically.

There are several reasons for adopting this approach:

• All the analysis is entirely reproducible: every plot, table etc. can be reproduced

by anybody with access to the input data. This approach ensures that the process

can be made as open and as transparent as possible as every aspect of the analysis

can be scrutinised by others.

• All the tools used to produce this report are free and open-source allowing anyone

to access them.

• The approach makes it much more efficient to take account of revised data e.g. if a

group finds a problem with the model results, new data are re-imported and the

document re-compiled and all the analysis is automatically regenerated.

• The model evaluation necessarily can only cover certain aspects of interest. By

making all the code available the modellers can develop the analysis further and

indeed use it for other situations.

Most of the analysis in this report does not allow for comparisons with observations

e.g. the source apportionment estimates from each model. However, some statistical ana-

lysis has been undertaken for the models producing hourly output. There are numerous

comparisons that can be undertaken when comparing models with measurements. The

approach adopted in this report is to keep the comparisons as brief as possible while focus-

ing on those that are considered to be most useful. Several contrasting model evaluation

statistics have been calculated that capture different aspects of model performance. In

addition the output from the hourly models have been compared with a range of relevant

air quality metrics.

In some cases, simple overall summary statistics are presented covering a range of

metrics. These summary statistics are defined in Appendix B. To help with interpretation

of these statistics summary results have been ranked in a simple way to show the best

2Available here http://www.defra.gov.uk/environment/quality/air/air-quality/committees/

aqeg/publish/.

http://www.defra.gov.uk/environment/quality/air/air-quality/committees/aqeg/publish/
http://www.defra.gov.uk/environment/quality/air/air-quality/committees/aqeg/publish/
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performing model first and so on. The ranking is based on the overall performance for

the Coefficient of Efficiency, 𝐶𝑂𝐸 (Legates and McCabe 2012; Legates and McCabe Jr

1999). The 𝐶𝑂𝐸 is a simple, good overall indicator of model performance and often other

statistics follow the order e.g. the correlation coefficient, 𝑟 or the Root Mean Square

Error, 𝑅𝑀𝑆𝐸. It is also easy to interpret — see Appendix B. In particular, a value of 1

indicates a perfect model and a value of zero shows that the predictions are no better than

taking the mean of the observations. However, there is no single model evaluation metric

that can encapsulate the full range of model performance. For this reason, the range of

statistics presented aim to provide a good overview of performance.

1.3 The models considered

The models considered in this report briefly described below. Further details relating to

these models are provided in the cited references.

1.3.1 ADMS-Urban

The ADMS-Urban model was first developed in 1996 by Cambridge Environmental

Research Consultants (McHugh et al. 1997a; McHugh et al. 1997b). ADMS-Urban is

an advanced three-dimensional quasi-Gaussian model calculating concentrations hour

by hour, nested within a straight-line Lagrangian trajectory model. The model provides

predictions on a continuous surface i.e. there is no distinction between ‘background’

and ‘roadside’. Predictions were available on a variable receptor grid with enhanced

resolution (≈ metres) close to roads.

ADMS-Urban uses an an 8-reaction atmospheric chemistry scheme based on Generic

Reaction Set (NO, NO2, O3, VOC) and a simplified scheme for sulphate generation.

Specific account is taken of primary NO2 fractions. Meteorology is based on hourly

surfacemeasurements at HeathrowAirport. The boundary conditions for different species

are based on hourly measurements from rural sites around London.

For the current study the model produced hourly predictions of all required species

including NOx, NO2, O3, PM10 and PM2.5. Similarly, all scenarios were modelled, based

on the London Atmospheric Emissions Inventory (LAEI). Note that ADMS-Urban

considers hourly profiles in emissions sources. Elements of the ADMS modelling system

have also been used in the ERG-Toolkit, KCL CMAQ-Urban and PCM.

1.3.2 BRUTAL

BRUTAL is the Imperial College Background Road and Urban Transport model of Air

quality Limit values model. It is most similar to the PCM model described below in

that it produces predictions at background locations at a 1 km2 resolution and roadside

contributions are considered as a separate increment. Longer range modelling out to

European scale is used in estimating background concentrations due to sources outside

London. BRUTAL uses source-receptor relationships derived from the PPM (Gaussian

type) model for area, volume and point sources to estimate PM10, NOx and NO2 concen-

trations. For roadside concentration enhancement factors are applied for street canyon

effects according to population density. The meteorological input is based on simple

annual wind roses.

BRUTAL was developed as a high resolution (1 km) road transport module based on

the road network to be integrated with the UK integrated assessment model, UKIAM,
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in order to estimate traffic emissions across the road network and calculate roadside

concentrations of air pollutants.

The only chemistry in BRUTAL is for the conversion of NOx to NO2. This is handled

by an extension of the quadratic relationship with deviations from the photostationary

state and allows for variable fractions of primary NO2.

For the current study the model produced annual predictions of the following species:

NOx, NO2, PM10 and PM2.5. Most scenarios were modelled, based on the NAEI.

1.3.3 ERG-Toolkit

The ERG-Toolkit is a semi-empirical model whose dispersion algorithms are based on

ADMS (Kelly et al. 2011). The toolkit predicts concentrations using a kernel modelling

technique to describe the initial dispersion. The kernel model relates to a set of model

concentration fields that are produced using an emissions source of unity: either 1 g s−1

(point sources), 1 g m−3 s−1 (volume sources) or 1 g km−1 s−1 (road sources). Each

kernel is created using hourly meteorological data from Heathrow Airport and hourly

emissions profiles to provide the hour of day and day of week emissions variations. The

model provides predictions on a continuous surface i.e. there is no distinction between

‘background’ and ‘roadside’.

ERG-Toolkit uses an empirical approach for calculating NO2 concentrations from total

NOx and for the calculation of O3.

For the current study the model produced annual predictions for the following species

NOx, NO2, PM10 and PM2.5. Similarly, all scenarios weremodelled, based on the London

Atmospheric Emissions Inventory (LAEI).

1.3.4 KCL CMAQ-Urban

The Weather Research and Forecasting (WRF) meteorological model, the Community

Multiscale Air Quality (CMAQ) regional scale model and the Atmospheric Dispersion

Modelling System (ADMS)Roadsmodel (version 3) have been coupled to create CMAQ-

urban. WRF provides themeteorological input to the KCLCMAQmodel which provides

air quality predictions starting at a European scale and through a series of model nests

which reduce in size, finally to focus on Greater London.

The CMAQ model provides hourly estimates of air quality concentrations across a

3×3 km London grid, and these outputs are coupled with the ADMS model, also driven

using WRF meteorology, to provide fine scale hourly air quality predictions. The KCL

CMAQ-Urban model gives hourly average concentrations of NOx, NO, NO2, O3 and

PM components at 20m×20m resolution in London using the CB05 chemical mechanism.

The near road chemistry was simulated using a simple chemical scheme described in

D. C. Carslaw and Beevers (2005). The reaction rates and photo-dissociation rates were

taken from the photolysis rate pre-processor (JPROC), part of the CMAQ run, and the

time of flight from road sources, estimated each hour, as a concentration weighted average

at each receptor location, assuming a straight line between source and receptor and using

WRF wind speed at 10 m height. A detailed description of the model can be found in

(Beevers et al. 2012).

KCL CMAQ-Urban produced hourly outputs of all species and provided information

on the effect of scenarios. No information was provided on surface (exceedance) statistics.
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1.3.5 Pollution Climate Mapping

The PCM (Pollution Climate Mapping) model is the model developed by Ricardo-AEA

and currently used in the UK for compliance assessment (Grice et al. 2010). The disper-

sion modelling is carried out using the ADMS model. Long-range transport of PM is

derived from the Lagrangian TRACK model. Regional background levels are calculated

by interpolating maps of concentrations from rural measurements. A semi-empirical

approach is used to calculate near-road concentrations. The roadside increments are

modelled by multiplying the adjusted link emission for each link by a ‘calibration coeffi-

cient’. The model separately considers predictions at background (1 km2) and along

roads. Predictions are for annual mean concentrations only.

The ‘total oxidant’ approach based on the work of Jenkin (2004a) and Jenkin (2004b)

is used to calculate NO2 concentrations from total NOx. The meteorology is based on

the Met Office surface site at Waddington.

For the current study the model produced annual predictions for the following species:

NOx, NO2, PM10 and PM2.5. Similarly, all scenarios were modelled, based on the

National Atmospheric Emissions Inventory (NAEI).

1.4 Primary NO2 assumptions

For predictions of NO2, the assumptions for the fraction of NOx emission that is primary

NO2 could be important — particularly from road transport sources. The models assume

the following primary NO2 fractions:

ADMS-Urban Assumes 22% for all major and minor roads, 11.5% for all airport sources

and 10.0% for all other sources.

BRUTAL assumes 10% primary NO2 for all non-traffic sources, and for traffic sources

primaryNO2 is based onNAEI assumptions according to vehicle category and local

fleet composition.3 For roadside enhancements this contribution is super-imposed

on the primary-secondary mix in the background grid square.

ERG-Toolkit and KCL CMAQ-Urban Assume 21% on average for road vehicle sources but

also vary the values depending on the vehicle fleet on each road (from 16.5% to

28.6%). Shipping is 11%, rail 13%, airports 11%, the rest 5%.

PCM For road traffic area sources: Central London 23.3%, Inner London 20.8%, Outer

London 18.5%. For non-traffic area sources: Central London 14%, Inner London

12.8%, Outer London 9.3%. For the traffic increment the values range from 15.4

to 26.1%.

It is likely that these assumptions will affect the model performance and the comparison

between models. For road traffic sources, all models assume similar values on average.

However, ERG-Toolkit, KCL CMAQ-Urban and PCM vary the primary NO2 by road

(vehicle type). For some busy roads in central and inner London the difference in these

assumptions could be important for roadside predictions.

3Murrells, T., Pierce, M. & Passant, N., 2009, An emissions inventory for primary NO2 and projections

for road transport, Briefing note to Defra, NAEI Ref: 48954007.
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2 Source apportionment

2.1 Introduction to source apportionment

This section considers the source apportionment of concentrations of NOx, PM10 and

PM2.5. Each group was asked to provide a breakdown of the predicted concentrations

according to major categories in the emission inventories. There is not an exact agreement

in source categories assumed mostly due to the differences between the NAEI and LAEI.

Nevertheless, it has been possible to identify major source categories to compare. It has

not been possible to compare all model outputs on a completely consistent basis due

to the way each model calculates source contributions. ADMS-Urban, BRUTAL and

the ERG-Toolkit each provide the total London contribution to the major transport

categories (e.g. cars, LGVs). However, the PCM model separately considers a ‘roadside’

and background contributions, with only the former providing information on the vehicle

breakdown. It is not possible using the PCM output to estimate the total car, LGV etc.

breakdown by vehicle but only a total road transport contribution. However, calculations

of the total road contribution have been made.

Details of the sites used in the analysis are given in Table 2.1.

T .: Details of the sites used in the source apportionment analysis.

site code easting northing site name site type

BL0 530123 182014 Camden - Bloomsbury urban background

BX1 551860 176376 Bexley - Slade Green suburban

CD3 530057 181285 Camden - Shaftesbury Avenue roadside

CR4 532583 165636 Croydon - George Street roadside

EA1 517541 180738 Ealing - Ealing Town Hall urban background

EA2 520304 180054 Ealing - Acton Town Hall roadside

EN1 533900 195800 Enfield - Bushhill Park suburban

GR4 543978 174655 Greenwich - Eltham suburban

HG1 533891 190707 Haringey - Haringey Town Hall roadside

KC1 524046 181750 Kensington and Chelsea - North Ken urban background

LB4 531070 175593 Lambeth - Brixton Road kerbside

LW2 536241 176932 Lewisham - New Cross roadside

MY1 528125 182016 Westminster - Marylebone Road kerbside

TD0 515600 170600 Richmond - National Physical Laboratory suburban

TH1 537509 180867 Tower Hamlets - Poplar urban background

TH2 535927 182221 Tower Hamlets - Mile End Road roadside

The data provided by each group allows a comparison to be made for 16 receptors.

Note that in the case of the PCM predictions were made at 14 receptors (CD3 and CR4

were absent) and this may affect the comparisons to a small extent. Summaries of these

results have been calculated both in terms of absolute concentrations and as percentages.

As noted above it has not been possible to estimate the breakdown by vehicle class for

all models. However, in the summary tables the sum of cars, LGVs, HGVs and Bus can

be used to compare with a total ‘roads’ contribution from the PCM model. Note that

in the following tables ‘gas’ means the combustion of natural gas and includes domestic,

commercial and a very minor contribution from industrial sources.
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2.2 Source apportionment for NOx

Table 2.2 and Table 2.3 show the source apportionment results for concentrations of

NOx. The ‘gas’ contribution refers to natural gas combustion, which is dominated by

domestic and commercial gas use. ‘other.tran’ is non-road transport sources that include

aircraft, rail, ships and off-road vehicle emissions. The ‘background’ contribution is the

assumed mean level of NOx concentration to which the London sources contribute. The

background concentration consists of both non-London UK sources and sources from

further afield.

T .: Mean source contributions to NOx concentrations by model and major source category

for 16 sites (µg m−3).

agg.type variable ADMS-Urban BRUTAL ERG-Toolkit PCM

background cars 10.1 6.7 14.0 0.0

background LGVs 4.3 1.9 4.6 0.0

background HGVs 7.6 4.5 5.7 0.0

background Bus 4.7 3.7 6.9 0.0

background roads 0.0 0.0 0.0 22.6

background gas 12.6 14.7 13.7 16.3

background other.tran 7.7 5.4 6.1 4.8

background background 13.0 12.3 13.5 11.0

background other 1.3 1.5 0.5 1.0

roadside cars 45.0 20.1 49.6 0.0

roadside LGVs 23.4 5.9 19.4 0.0

roadside HGVs 27.1 13.7 17.6 0.0

roadside Bus 41.9 11.1 53.6 0.0

roadside roads 0.0 0.0 0.0 148.4

roadside gas 17.1 21.0 17.1 19.2

roadside other.tran 4.0 5.9 3.8 4.7

roadside background 13.0 11.5 13.5 11.0

roadside other 1.6 1.8 0.7 1.1

Considering Table 2.2 and Table 2.3 there are several important characteristics of the

models. First, there is good agreement in the estimate or assumption of the background

contribution, which accounts for ≈20% of the mean NOx concentration across the 16

receptors at background locations. In terms of absolute values the models are in close

agreement with ADMS-Urban = 13.0, BRUTAL = 12.3, ERG-Toolkit = 13.5 and PCM

= 11.0 µg m−3. At the roadside sites the background concentration typically accounts for

6 to 13% of the total NOx.

There are some potentially important differences in the contribution made by different

vehicle types, which is best seen in Table 2.3. For example, across the 16 receptors at

roadside sites the ERG-Toolkit assumes a lower contribution from HGVs and a higher

contribution from buses compared with either ADMS-Urban or BRUTAL. For this

reason the models would be expected to respond differently to scenarios that specifically

targeted these vehicles. The differences will be mostly due to differences in the emission

rates assumed, or the handling of emissions data in general e.g. day of week effects,

specific account of queueing.

A more detailed breakdown of the source apportionment of NOx is shown in Figure 2.1

and Figure A.1 by site. Figure 2.1 shows the absolute concentration breakdown by major

source category together with the measured value at each site.
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T .: Mean source contributions to NOx concentrations by model and major source category

for 16 sites (%).

type variable ADMS.Urban BRUTAL ERG.Toolkit PCM

background cars 16.5 13.1 21.6 0.0

background LGVs 7.1 3.7 7.1 0.0

background HGVs 12.4 8.8 8.8 0.0

background Bus 7.6 7.3 10.6 0.0

background roads 0.0 0.0 0.0 40.5

background gas 20.6 29.1 21.1 29.3

background other.tran 12.5 10.6 9.3 8.6

background background 21.2 24.3 20.7 19.7

background other 2.1 3.0 0.8 1.8

roadside cars 26.0 22.1 28.3 0.0

roadside LGVs 13.5 6.4 11.1 0.0

roadside HGVs 15.6 15.1 10.1 0.0

roadside Bus 24.2 12.2 30.6 0.0

roadside roads 0.0 0.0 0.0 80.5

roadside gas 9.9 23.1 9.8 10.4

roadside other.tran 2.3 6.5 2.2 2.5

roadside background 7.5 12.7 7.7 6.0

roadside other 0.9 2.0 0.4 0.6

Bexley − Slade Green Camden − Bloomsbury Camden − Shaftesbury Avenue Croydon − George Street

Ealing − Acton Town Hall Ealing − Ealing Town Hall Enfield − Bushhill Park Greenwich − Eltham

Haringey − Haringey Town Hall Kensington and Chelsea − North Ken Lambeth − Brixton Road Lewisham − New Cross

Richmond − National Physical Laboratory Tower Hamlets − Mile End Road Tower Hamlets − Poplar Westminster − Marylebone Road
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F .: Source apportionment of NOx concentrations at 16 sites. The dashed line shows the

measured concentration.
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2.3 Source apportionment of PM10

A summary of the source apportionment results for PM10 by major source category is

shown in Table 2.4 and Table 2.5. All models show that the background component con-

tributes considerably to the overall mean concentration across the 16 sites (contributing

between ≈69 to 90% of the total at background locations and 55 to 75% at roadside

locations).

Figure 2.2 also shows the measured PM10 concentration at each site (where available).

Note that these concentrations represent values calculated using the KCL Volatile Correc-

tionModel, VCM. The volatile PM made using nearby FDMS instruments to correct the

measurements made by the TEOM. It would also have been useful to compare the predic-

tions with Partisol measurements, but due to problems with filter weight measurements,

these were not available for 2008.

In Table 2.4 the vehicle emissions by vehicle type relate to exhaust emissions. The

BRUTAL model tends to give around double the contribution for cars compared with

ADMS-Urban and the ERG-Toolkit for roadside locations. Exhaust emissions contribute

9.1% for ADMS-Urban, 10.9% for BRUTAL, 8.6% for the ERG-Toolkit and 14.7%

for the PCM. These results suggest therefore the models would respond very differently

to scenarios that reduce (or increase) exhaust PM emissions.

The principal difference in Table 2.4 and Table 2.5 relates to the estimates of non-

exhaust emission estimates. In this case the ERG-Toolkit suggests about two to three times

the contribution of the other models and a considerable fraction of the overall mean PM10

concentration (29.1%) at roadside sites. Note that ADMS-Urban and ERG-Toolkit

non-exhaust estimates include tyre and brake wear and resuspension, the PCM includes it

in ‘background’ and BRUTAL does not include resuspension estimates. The differences

observed between the models will be mostly affected by the emission inventories used.

T .:Mean source contributions to PM10 concentrations bymodel andmajor source category

for 16 sites (µg m−3).

agg.type variable ADMS-Urban BRUTAL ERG-Toolkit PCM

background cars 0.2 0.7 0.3 0.0

background LGVs 0.1 0.3 0.1 0.0

background HGVs 0.1 0.1 0.2 0.0

background Bus 0.0 0.1 0.1 0.0

background roads 0.0 0.0 0.0 1.2

background gas 0.1 0.1 0.1 0.3

background other.tran 0.3 0.3 0.2 0.4

background background 19.7 15.4 16.3 17.3

background Non.exhaust 0.8 2.3 2.5 0.7

background other 0.4 3.3 1.7 0.9

roadside cars 1.0 1.6 1.0 0.0

roadside LGVs 0.7 0.7 0.3 0.0

roadside HGVs 0.5 0.3 0.6 0.0

roadside Bus 0.2 0.2 0.6 0.0

roadside roads 0.0 0.0 0.0 4.1

roadside gas 0.2 0.1 0.2 0.3

roadside other.tran 0.1 0.4 0.1 0.4

roadside background 19.7 16.1 16.3 18.2

roadside Non.exhaust 3.4 2.3 8.7 3.9

roadside other 0.6 3.7 2.0 1.1
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T .:Mean source contributions to PM10 concentrations bymodel andmajor source category

for 16 sites (%).

type variable ADMS.Urban BRUTAL ERG.Toolkit PCM

background cars 1.1 2.9 1.6 0.0

background LGVs 0.7 1.4 0.5 0.0

background HGVs 0.5 0.7 0.9 0.0

background Bus 0.1 0.3 0.4 0.0

background roads 0.0 0.0 0.0 5.7

background gas 0.6 0.4 0.6 1.3

background other.tran 1.3 1.3 1.1 2.0

background background 90.0 68.5 75.5 83.3

background Non.exhaust 3.9 10.1 11.7 3.3

background other 1.8 14.5 7.7 4.6

roadside cars 3.9 6.1 3.4 0.0

roadside LGVs 2.6 2.8 1.2 0.0

roadside HGVs 1.8 1.3 1.9 0.0

roadside Bus 0.8 0.7 2.1 0.0

roadside roads 0.0 0.0 0.0 14.7

roadside gas 0.7 0.5 0.6 0.9

roadside other.tran 0.5 1.6 0.5 1.5

roadside background 74.8 63.6 54.5 65.3

roadside Non.exhaust 12.8 8.9 29.1 13.8

roadside other 2.2 14.4 6.8 3.8

Bexley − Slade Green Camden − Bloomsbury Camden − Shaftesbury Avenue Croydon − George Street

Ealing − Acton Town Hall Ealing − Ealing Town Hall Enfield − Bushhill Park Greenwich − Eltham

Haringey − Haringey Town Hall Kensington and Chelsea − North Ken Lambeth − Brixton Road Lewisham − New Cross

Richmond − National Physical Laboratory Tower Hamlets − Mile End Road Tower Hamlets − Poplar Westminster − Marylebone Road
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F .: Source apportionment of PM10 concentrations at 16 sites. The dashed line shows

the measured concentration.

Given the importance of the background contribution to concentrations of PM10, it is
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worth considering how the models treat this component in more detail. Several of the

models provided more information on the disaggregation of the background component

including the PCM,BRUTALand theKCLCMAQ-Urban. For theKCLCMAQ-Urban

model the main components of PM10 are derived from the CMAQ model directly and

vary spatially across London (although only by a small amount) and temporally (hourly

values of each component).

Figure 2.3 shows the annual mean breakdown by major component for three of the

models: BRUTAL, KCL CMAQ-Urban and PCM. There is generally a good corres-

pondence in the mean values of the major components such as sulphate, ammonium and

SOA. The ‘other’ category contains components such as iron, crustal materials and in the

case of the PCM an ‘residual’. The principal difference between the models is therefore in

these ‘other’ components. BRUTAL uses the same data as PCM for some of the regional

components and this explains the close agreement between them.

2.4 Source apportionment of PM2.5

A summary of the source apportionment results for PM2.5 are shown in Table 2.6 and

Table 2.7, and also in Figure 2.4 and Figure A.3. These results share many of the charac-

teristics of PM10; in particular the large contribution from the background component.

The models predict that between 70% to 86% of the PM2.5 concentration averaged

across the background receptors is due to the background contribution and 58 to 69% at

roadside locations. The differences in the background contribution are however import-

ant and account for up to 2.3 µg m−3 between the models. This difference is important

because it is much greater than the vehicle exhaust contribution — on average. Clearly,

some level of agreement on what the background concentration ‘should’ be would help

reduce these differences.

Exhaust emissions contribute a relatively small amount of the total PM2.5 on average for

most models. For example, the average contribution is as follows for roadside locations:

ADMS-Urban = 16.5%, BRUTAL = 9.4%, ERG-Toolkit = 14.4% and PCM = 17.3%.

The principal difference between the models is for the non-exhaust component where

the ERG-Toolkit suggests a mean contribution of 14.7% compared with about 9% for

the other models.



2 Source apportionment 19

T .: Mean source contributions to PM2.5 concentrations by model and major source

category for 16 sites (µg m−3).

agg.type variable ADMS-Urban BRUTAL ERG-Toolkit PCM

background cars 0.2 0.6 0.4 0.0

background LGVs 0.1 0.3 0.1 0.0

background HGVs 0.1 0.1 0.1 0.0

background Bus 0.0 0.1 0.0 0.0

background roads 0.0 0.0 0.0 1.4

background gas 0.1 0.1 0.1 0.3

background other.tran 0.2 0.2 0.2 0.4

background background 9.5 9.8 9.2 11.3

background Non.exhaust 0.3 0.0 0.7 0.5

background other 0.3 2.9 1.5 0.6

roadside cars 1.0 0.8 1.1 0.0

roadside LGVs 0.6 0.4 0.5 0.0

roadside HGVs 0.4 0.2 0.4 0.0

roadside Bus 0.2 0.1 0.3 0.0

roadside roads 0.0 0.0 0.0 3.1

roadside gas 0.2 0.1 0.2 0.3

roadside other.tran 0.1 0.3 0.1 0.4

roadside background 9.5 10.2 9.2 11.8

roadside Non.exhaust 1.2 0.0 2.3 1.6

roadside other 0.5 3.1 1.8 0.7

T .: Mean source contributions to PM2.5 concentrations by model and major source

category for 16 sites (%).

type variable ADMS.Urban BRUTAL ERG.Toolkit PCM

background cars 2.1 4.6 2.9 0.0

background LGVs 1.3 2.0 1.1 0.0

background HGVs 1.0 1.0 0.9 0.0

background Bus 0.2 0.6 0.3 0.0

background roads 0.0 0.0 0.0 9.6

background gas 1.1 0.4 1.0 2.2

background other.tran 2.3 1.6 1.6 3.0

background background 86.1 69.6 74.6 77.5

background Non.exhaust 2.9 0.0 5.8 3.4

background other 3.1 20.2 11.9 4.3

roadside cars 7.1 5.2 7.0 0.0

roadside LGVs 4.7 2.4 2.9 0.0

roadside HGVs 3.2 1.1 2.3 0.0

roadside Bus 1.5 0.7 2.2 0.0

roadside roads 0.0 0.0 0.0 17.3

roadside gas 1.3 0.4 1.0 1.9

roadside other.tran 0.9 2.1 0.8 2.4

roadside background 69.1 67.4 57.9 65.6

roadside Non.exhaust 8.8 0.0 14.7 9.1

roadside other 3.5 20.6 11.3 3.7
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F .: Source apportionment of PM2.5 concentrations at 16 sites. The dashed line shows

the measured concentration. Note there are very few sites available for comparison with measure-

ments.
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3 Surface predictions

3.1 Exceedance area comparisons

In this section the surface predictions of different species and models are compared. The

models provide different output resolutions, so a direct, consistent comparison between

them is not possible. The PCM and BRUTAL models predict absolute concentrations

on a 1 km2 grid. In the case of ADMS-Urban the predictions were originally made

on a variable grid with more receptors close to roads for example than at background

locations. In the case of the ERG-Toolkit predictions were made on a 20 m regular grid.

For ADMS-Urban A bi-linear interpolation was carried out to derive concentrations on

a 20×20 m regular grid — from which other grid resolutions could be calculated (Akima

2012).

The PCM and BRUTAL models use a ‘background’ model to estimate concentrations

on km2 basis and therefore do not account for finer spatial details. The PCM however

separately estimates length of road network exceeding different concentration thresholds

based on a typical single distance from the road, corresponding to the typical distance

from the road of a roadside monitor. These data have not been used in the analysis as

they would require the other models to define and calculate lengths of road exceeding

different limits.

The following comparisons consider the total surface area exceeding different con-

centration thresholds. To enable a consistent comparison, all model gridded data were

averaged to a 1 km2 basis, although the finer resolution of ADMS-Urban and ERG-

Toolkit has been used in several analyses as described below. Furthermore, to ensure the

analyses are as consistent as possible, the 2466 km2 of the LAEI were used to define the

area over which the comparisons are made.

3.2 NO2 exceedance areas

The distribution ofNO2 concentrations on a 1 km
2 basis is shown in Figure 3.1. All models

highlight the importance of central London and Heathrow Airport, where concentrations

of NO2 exceed 40 µg m
−3. The road sources of ADMS-Urban tend to be more prominent

than either the PCM or BRUTAL. However, overall the distributions tend to reflect the

importance of road sources. There is also more similarity between ADMS-Urban and

ERG-Toolkit and PCM and BRUTAL, perhaps reflecting the use of different inventories.

Higher resolution maps for ADMS-Urban and ERG-Toolkit are shown in 3.2, which

emphasise the importance of road sources in controlling the concentration of NO2. Fig-

ure 3.2 shows that ADMS-Urban tends to predict lower concentrations of NO2 compared

with ERG-Toolkit except in the vicinity of Heathrow Airport. The PCM also separ-

ately provided an output showing the road link sources superimposed on the gridded

background concentrations ( Figure 3.3).

Transects of constant latitude or longitude are very useful for exploring the differences

between the models. As an example, a transect of constant latitude (at OS 180000

northing) which passes through central London has been analysed. The results, shown

in Figure 3.4 highlight some important differences between the models. In terms of con-

centrations of NOx, ADMS-Urban and ERG-Toolkit give the highest (and very similar)

concentrations across London, but with ERG-Toolkit having higher concentrations in

west London. BRUTAL and PCM tend to have lower concentrations, although in the
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F .: Spatial distribution of annual mean NO2 concentrations from the PCM model

showing the road link predictions.

east part of central London (around easting = 53000) the PCM is reasonably similar

to ADMS-Urban and ERG-Toolkit. There are much larger differences between PCM

and BRUTAL compared with ADMS-Urban and ERG-Toolkit for the west part of

central/inner London around easting = 525000. These differences are likely related to

the differences in the inventories used (LAEI vs. NAEI).

The higher overall NOx/NO2 ratio shown by ERG-Toolkit has the effect of producing

higher NO2 predictions across London as shown in the right panel of Figure 3.4. Also, the

differences previously noted between ERG-Toolkit and ADMS-Urban in west London

become more apparent when considering the transect of NO2 concentration.
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F .: Transect across 182000 northing for NOx and NO2 for concentrations aggregated to

1 km2.

It is perhaps easier to see the differences between the models by considering Figure 3.5,

which shows the cumulative distributions of the NOx, NO2 and the NO2/NOx ratio.

Now it is possible to see the very close similarity of ADMS-Urban and the ERG-Toolkit

for NOx and the lower overall NOx concentrations predicted by the PCM and BRUTAL.

However, the close similarity between ADMS-Urban and ERG-Toolkit for NOx does

not translate to NO2 where the ERG-Toolkit tends to predict higher concentrations. For

NO2, the ERG-Toolkit distribution has a similar shape to the other models but is offset by

≈8 µg m−3 compared with ADMS-Urban. This offset is not however related to different

estimates of the background concentration (ADMS-Urban and the ERG-Toolkit assume

virtually the same background concentration). Given the similarity in NOx predictions

between ADMS-Urban and ERG-Toolkit, the difference in NO2 predictions is more

likely to be due to assumptions related to primary NO2 and how NO-NO2-O3 chemistry

is treated.
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F .: Cumulative area above different levels of NOx and NO2 concentration and the ratio

of NO2/NOx in London.

These results lead to large differences between the models in their estimate of the

surface area of London exceeding different threshold values. For example, it can be

shown that the area in km2 >40 µg m−3 for each model is as follows: ADMS-Urban = 156,

BRUTAL = 70, ERG-Toolkit = 295 and PCM = 66 km2.

These results are interesting and important because it is difficult (or impossible) to

judge from the comparison of measurements with model predictions whether the use of a

particular model would lead to higher or lower numbers of excedenaces across London.

For example, in Phase 1 it was shown that the ADMS-Urban and ERG-Toolkit had

a very similar performance for annual mean NO2. However, the ERG-Toolkit model

estimates that about twice the area of London would be above the 40 µg m−3 Limit

Value compared with ADMS-Urban. It should also be noted that these results are a

characteristic of threshold statistics, particularly when concentrations are close to a

threshold. In these situations even a small change in the predicted value can have a large

effect on the exceedance area. Nevertheless, air quality limits are expressed in this way

and this behaviour is an intrinsic characteristic of them.

It is also possible to investigate the effect of model resolution on the estimate of area

above 40 µg m−3 for NO2 using the models that provide predictions at a high spatial

resolution. Taking ADMS-Urban as an example, the 1 km resolution grid shows that
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156 km2 exceed 40 µg m−3. If the grid resolution is reduced to 100 m then it can be

shown that 199 km2 exceed and for a 20 m resolution 192 km2 exceed. This type of

variation is expected because 1 km2 outputs will tend to reduce the exceedance areas

because they are ‘averaged-out’. The use of higher resolution outputs therefore tends to

increase the exceedance area estimates.

The calculation of surface areas above a threshold such as 40 µg m−3 is very sensitive to

small variations in the predicted concentration. Given a±10%variation in predictedNO2

concentration, the mean and range of the exceedance areas is as follows: ADMS-Urban

156 [62, 312] km2; BRUTAL70 [35, 128] km2; PCM66 [32, 136] km2 and ERG-Toolkit

295 [116, 604] km2. Therefore, given reasonable assumptions about model uncertainty

of ±10% it can be shown that the central estimates for each model for the surface area

exceeding 40 µg m−3 is actually within this range. For example, the range of surface areas

exceeding across the models is 66 (PCM) to 295 km2 (ERG-Toolkit), whereas the ±10%

for ADMS-Urban spans a similar range from 62 to 312 km2.
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F .: Surface distributions of annualmeanNO2/NOx ratio. Note that there are interpolation

uncertainties in the ERG-Toolkit results due to the 20 m grids not extending to the edge of the

full grid square.

The predictions of NOx can be used to explore the ratio of NO2/NOx spatially. Fig-

ure 3.6 shows the NO2/NOx ratio across the LAEI grid. It does show some interesting

differences between the models. BRUTAL for example tends to have a much higher

NO2/NOx ratio compared with other models in outer London. ADMS-Urban also shows

a lower ratio in central London compared with the other models and a higher ratio in

north London compared with south London.
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3.3 PM10 and PM2.5 exceedance areas

The spatial distribution of PM10 concentrations for each model is shown in Figure 3.7. An

important feature of these maps is the influence of the background concentration of PM10

assumed, as this assumption clearly affects the overall concentration field. For example,

ADMS-Urban clearly assumes a higher background concentration than other models.

The other effect that can be seen is that road sources in BRUTAL are more prominent,

suggesting that these emission sources have a greater influence on concentrations of PM10

compared with the other models.
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F .: Surface distributions of annual mean PM10 concentration (µg m
−3).

East-west transects for PM10 and PM2.5 are shown in Figure 3.8. It is very clear from this

Figure that there are comparatively large differences between the models. ADMS-Urban

has a lower urban increment compared with the other models and the PCM tends to

estimate lower PM10 concentrations in the west part of central/inner London. However,

the most significant differences between the models is apparent for concentrations of

PM2.5, shown in the right panel of Figure 3.8. Here it is clear that there are large differences

in the rural background on which the modelled London sources sit. There are also large

differences in the location of the highest concentrations. ADMS-Urban not only has a

lower concentration profile than the other models, the increment above rural background

is also much lower than the other models. Given that NOx concentrations are reasonably

similar across the models, the differences are most likely due to emission source strength

differences assumed.

The results for PM10 highlight the importance of background concentration assumptions

in the models. Figure 3.9 shows that concentrations for all models are compressed

into a very narrow range in concentrations. Given the large contribution made by the
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F .: Transect across 182000 northing for PM10 and PM2.5 for concentrations aggregated

to 1 km2.

‘background’ component (as shown in Figure 2.2), even a small variation in that value

can have a large effect on the distribution of PM10 concentrations. In this case the models

tend to follow the assumptions for background contribution (see Table 2.4). For example,

in that Table the ADMS-Urban model predicted a higher background concentration

than the other models, and this is carried through to Figure 3.9.

The differences between the models are clearly seen in Figure 3.9, which highlights

several important features. First, the overall higher background concentration of PM10

assumed for ADMS-Urban is apparent. Second, the distribution of PM10 for ADMS-

Urban is much narrower than the other models which shows that sources in London have

less of an affect on PM10 concentrations compared with the other models.

The results for PM2.5 also highlight the importance of background concentration as-

sumptions in the models. Figure 3.10 shows the spatial distribution of PM2.5 across

London.

Figure 3.11 shows that concentrations for all models are again compressed into a very

narrow range in concentrations. In contrast to the results for PM10, the ADMS-Urban

predictions tend to be lower than the other models. This finding is affected mostly by the
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−3).

assumption of background PM2.5 concentration assumed. For PM10 the ADMS-Urban

model predicted higher concentrations than the other models, but this behaviour is

reversed for PM2.5, as shown in Table 2.6.

The influence of the background assumption on surface area above a concentration

threshold is strong and can be most clearly seen in Figure 3.11. For example, for a PM2.5

concentration of 12 µg m−3 (a typical mean concentration in London, based on the 2008

data), the ADMS-Urban model predicts that almost 100% of the London area will be

below this value. The ERG-Toolkit predicts about 85% of the London area will be below

this value, while the PCM and BRUTAL models predict very little area of London below

this value. The actual differences are very dependent on the background concentration

of PM2.5 assumed, which as stated before was rather uncertain in 2008 when there were

few measurements.

The models could therefore give very different estimates of the area above or below

certain concentrations. The extent to which this matters depends very much on the

concentration in question: for concentrations around the mean the models are very sens-

itive to small changes. The key point though is that the surface area exceeding different

concentration thresholds is most strongly influenced by the background concentration.

Note that the models have different methods of calculating the background component.

Therefore, some agreement on the magnitude and composition of this component to

ensure consistency across the models would be beneficial.4

4Note however that the KCL CMAQ-Urban model does explicitly calculate background concentrations

but surface area calculations were not available for that model.
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F .: Cumulative area above different levels of PM2.5 concentration in London.

4 Scenarios

4.1 Introduction

This section considers the response of the models to a series of scenarios. The source

apportionment analysis in Section 2 provided useful information on the contribution each

source category makes to the overall concentration of primary pollutants. In that analysis

it was not possible to exactly match the contributions by each model — particularly for

road transport emissions where the PCM separately considered roadside and background

contributions. While much can be gleaned from the source apportionment analysis, it

does not provide any information on how concentrations of secondary component such

as NO2 would respond to source changes. The following scenarios were considered.

S1 30% reduction in road transport exhaust emissions of NOx, PM10 and PM2.5.

S2 30% increase in road transport exhaust emissions of NOx, PM10 and PM2.5.

S3 30% reduction in domestic, commercial and public NOx emissions.

S4 30% reduction in total road transport PM10 emissions i.e. exhaust and non-exhaust

emissions.

These scenarios apply only to emissions in London and no change in background

emissions or concentrations has been assumed. In scenarios 1 and 2 only exhaust emissions

are considered, which in the case of NOx and NO2 could simulate either direct control

of exhaust emissions e.g. through after-treatment, or traffic reduction. Scenarios 1 and

2 for PM10 and PM2.5 would not simulate a reduction in vehicles due to the remaining

effect of particle resuspension, which might be expected to be related to total vehicle

flows and cannot be controlled through after treatment. It should be stressed however

that in the case of PM emissions it is not necessarily the case that a reduction in traffic

would result in a commensurate reduction in non-exhaust PM, but the scenario is more

to judge the sensitivity of the models to changes in different source components. Note

that some groups also predicted the change in PM10 and PM2.5 for Scenario S3 although

these results were not requested from the groups.

The analysis was carried out for all receptors considered in Phase 1.
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4.2 Scenario results

A summary of the overall results averaged across all receptors is given in Table 4.1. Note

that not all models predicted all scenarios and these are shown as blanks in Table 4.1.

Considering the results for NOx, the models are in very good agreement across most

scenarios. For example, scenario 1 (30% reduction in London road vehicle emissions)

covers a narrow range in predicted NOx reduction from 19.1 to 21.7 µg m−3. Where

the models diverge in in scenario 3 (reduction in domestic, commercial emission) where

BRUTAL predicts approximately twice the reduction in NOx compared with the other

models. There is an interest in the straightforward question as to what change the models

predict due to each scenario, but also whether the changes are consistent. For example,

the models may predict similar changes in NOx concentration but give very different

responses for NO2, which might indicate important differences in how the chemistry is

treated in each model.

There is however more of a spread in predicted reduction in NO2 concentration from

6.4 (ADMS-Urban) to 11.1 µg m−3 (BRUTAL) — for scenario S1. The PCM and

ERG toolkit reductions are very similar (8.1 and 7.8 µg m−3, respectively), whereas KCL

CMAQ-Urban is closer to ADMS-Urban (6.9 µg m−3). These predicted reductions

in NO2 concentration can be compared with a mean measured NO2 concentration

of 52 µg m−3. A 30% reduction in road transport emissions therefore is predicted to

reduce NO2 concentrations by about 12% (ADMS-Urban) to 21% (BRUTAL). The

ERG-Toolkit and PCM reductions are 16 and 15% respectively. Note that scenario S2

(30% increase in road transport emissions) leads to similar changes (increases); although

they are not as great as the reductions described for scenario S1.

The results for NO2 can be considered in more detail by retaining the individual site

responses. This is important because the response of NO2 to changes in total NOx

concentration will depend on the concentration of NOx and the type of site i.e. the extent

to which a site is NOx or O3 limited. Figure 4.1 shows the response of NO2 concentrations

due to scenario S1. In this plot the response of the sites has been ordered from smallest

to greatest change to help with interpretation. There are several important features in

this plot that are not apparent from considering Table 4.1. First, the NO2 response of

the models varies considerably by the magnitude of the change in NO2 concentration.

The BRUTAL model gives a much greater reduction in NO2 across all sites. The PCM,

ADMS-Urban, ERG-Toolkit and KCL CMAQ-Urban tend to give similar reductions in

NO2 when the change in concentration is small (i.e. at background sites), but increasingly

diverge as the change in concentration increases. There is a discontinuity in the PCM

results around a site index of about 54, which could be due to a change from ‘background

model’ to ‘roadside model’.

The divergence in the concentration of NO2 is important because the difference

between the models is greatest when the change in concentration is greatest. For ex-

ample, Figure 4.1 shows that when a change of ≈9 µg m−3 is predicted by ADMS-Urban

and KCL CMAQ-Urban, the other models predict ≈15 µg m−3. These are large differ-

ences and imply that at sites where the initial NOx concentration is relatively high, the

ADMS-Urban and KCL CMAQ-Urban models predicts much less of a change in the

concentration of NO2 than the other models. The reasons for these differences will be

driven by the different methods used to calculate NO2 concentrations. Models that

use empirical relationships to estimate NO2 from NOx tend to show more change in

NO2 concentration at higher concentrations of NOx. Conversely, models that treat the
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T .: Effect of the different scenarios by pollutant and model (µg m−3). The base case

predictions have been subtracted from each scenario to show the nett effect on concentrations.

pollutant model S1 S2 S3 S4

NO2 ADMS-Urban -6.4 6.1 -1.5

NO2 BRUTAL -11.1 10.7 -4.5

NO2 CMAQ-Urban -6.9 6.4 -1.5 0.0

NO2 ERG-toolkit -7.8 7.4 -1.7

NO2 PCM -8.1 7.8 -1.6

NOx ADMS-Urban -19.1 19.1 -4.4

NOx BRUTAL -21.7 22.2 -8.7

NOx CMAQ-Urban -18.2 18.3 -4.0 0.1

NOx ERG-toolkit -20.4 20.4 -4.3

NOx PCM -19.1 19.1 -4.1

O3 ADMS-Urban 2.2 -1.9 0.9

O3 CMAQ-Urban 3.7 -3.1 1.1 -0.0

O3 ERG-toolkit 2.8 -2.4 1.6

PM10 ADMS-Urban -0.4 0.4 -0.1 -0.9

PM10 BRUTAL -1.2 1.7 -0.2 -1.9

PM10 CMAQ-Urban -0.9

PM10 ERG-toolkit -0.4 0.4 -0.0 -2.0

PM10 PCM -0.7 0.7 -1.2

PM25 ADMS-Urban -0.3 0.3 -0.1 -0.5

PM25 CMAQ-Urban -0.6

PM25 ERG-toolkit -0.4 0.4 -0.0 -0.8

PM25 PCM -0.6 0.6 -0.9

chemistry more explicitly (ADMS-Urban and KCL CMAQ-Urban) show less response.

Hourly predictions for two of the models (ADMS-Urban and KCL CMAQ-Urban)

are considered in more detail in Section 5.4.
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F .: Effect on concentrations of NO2 ordered by site for Scenario S1.

Clearly the changes described above for NO2 and shown in Figure 4.1 ignores the

correponding changes in NOx concentration. Nevertheless, the absolute changes in

NO2 highlight what each model believes the change in NO2 would be for a particular
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scenario. More information can be gained by considering the corresponding change

in NOx concentration, which is shown in Figure 4.2. Now it is possible to see for a

particular change in NOx there is generally less change in NO2 for the ADMS-Urban

model, whereas the PCM and ERG-Toolkit give similar reponses. The BRUTAL model

predicts much greater reductions in NO2 for a particular change in NOx compared with

the other models. These show that the changes in NO2 concentration seen in Figure 4.1

for the PCM and ERG-Toolkit are in part due to differences in the predicted change in

NOx rather than the relationship between NOx and NO2 used.
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F .: Change in NOx and corresponding change in NO2 concentration ordered by site for

Scenario S1.

The changes in PM10 and PM2.5 are consistent with the transects considered in Sec-

tion 3.3. For a 30% reduction in exhaust PM, ADMS-Urban and ERG-Toolkit on

average predict a similar reduction in PM10 of ≈0.4 µg m−3. This reduction is much less

than suggested by the PCM model of 0.7 µg m−3. Clearly these differences would have

important implications for judging the efficacy of emission reduction scenarios. There is

a similar situation for PM2.5. For scenario 4 the ERG-Toolkit model gives the greatest

reduction in PM10, which as seen in Section 2.3 is due the larger contribution assumed

from non-exhaust PM. Taken as a whole, the differences between the PM models for

local emission reduction scenarios will be driven more by the emission inventory data

differences rather than the models themselves.

5 Analysis of hourly results

5.1 Introduction

Two of the models were able to provide hourly predictions: ADMS-Urban and the

KCL CMAQ-Urban. The prediction of hourly concentrations is very challenging for

urban models for several reasons. First, the emissions may not be sufficiently detailed

or accurate to adequately capture hourly variations by source. Second, dispersion in

urban areas is highly complex and many monitoring sites are affected by complex mixing

around buildings that are not represented in models — or are only simply parametrised.
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Nevertheless, there are several comparisons with measurements that can be made that

can help understand some of the reasons for the differences between models.

The following tables provide summaries of the hourly models for NOx, NO2, PM10 and

PM2.5. For NOx and NO2 concentrations the performance of the models is very similar;

although KCL CMAQ-Urban tends to underestimate NOx more than ADMS-Urban

and ADMS-Urban tends to underestimate NO2 more. The KCL CMAQ-Urban model

uses the WRF model to provide the meteorological data as input to the urban model.

The ADMS-Urban model uses the Met Office surface meteorological site at Heathrow

Airport. As discussed in the Phase 2 Regional Evaluation report (D. Carslaw et al. 2013),

the regional models in general do very well in predicting surface meteorological variables

such as temperature, wind speed and wind direction. However, as shown in D. Carslaw

et al. (2013) predictions of other important variables such as boundary layer height

are much more variable between different models, which will be due to the different

planetary boundary layer (PBL) schemes used. Nevertheless ADMS-Urban and KCL

CMAQ-Urban produce very similar predictions given the different meteorological data

used as input.

T .: Performance of ADMS-Urban and KCL CMAQ-Urban for NOx concentrations.

variable ADMS-Urban KCL-CMAQ-urban

n 127508.00 133146.00

FAC2 0.73 0.72

MB -12.29 -24.98

MGE 60.43 61.66

NMB -0.10 -0.20

NMGE 0.49 0.49

RMSE 115.77 122.23

r 0.73 0.71

COE 0.43 0.43

T .: Performance of ADMS-Urban and KCL CMAQ-Urban for NO2 concentrations.

variable ADMS-Urban KCL-CMAQ-urban

n 127477.00 133115.00

FAC2 0.81 0.81

MB -9.84 -5.36

MGE 23.41 23.53

NMB -0.17 -0.09

NMGE 0.39 0.39

RMSE 43.45 43.68

r 0.71 0.69

COE 0.38 0.38

The results for PM10 and PM2.5 are very different to those for NOx and NO2. The

principal difference is that the KCL CMAQ-Urban model underestimates PM10 and

PM2.5 to a much greater extent than ADMS-Urban. There are however considerable

differences in how the background component is calculated in each case, which dominates

overall concentrations. In the case of ADMS-Urban the background concentration
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T .: Performance of ADMS-Urban and KCL CMAQ-Urban for O3 concentrations.

variable ADMS-Urban KCL-CMAQ-urban

n 73707.00 76937.00

FAC2 0.67 0.65

MB -0.34 1.99

MGE 11.87 12.75

NMB -0.01 0.06

NMGE 0.34 0.37

RMSE 16.49 17.20

r 0.79 0.79

COE 0.46 0.42

is based on ambient measurements whereas in the KCL CMAQ-urban model these

components are calculated explicitly. Furthermore, it is also known that regional scale

models tend to underestimate most PM components.

T .: Performance of ADMS-Urban and KCL CMAQ-Urban for PM10 concentrations.

variable ADMS-Urban KCL-CMAQ-urban

n 91735.00 95973.00

FAC2 0.88 0.64

MB -0.48 -8.68

MGE 8.35 11.09

NMB -0.02 -0.34

NMGE 0.33 0.43

RMSE 13.12 15.91

r 0.63 0.62

COE 0.30 0.10

T .: Performance of ADMS-Urban and KCL CMAQ-Urban for PM2.5 concentrations.

variable ADMS-Urban KCL-CMAQ-urban

n 33588.00 34796.00

FAC2 0.92 0.62

MB -1.06 -3.77

MGE 4.34 6.41

NMB -0.07 -0.26

NMGE 0.31 0.45

RMSE 6.70 8.58

r 0.68 0.61

COE 0.33 0.01

5.2 Comparsions with common air quality metrics

The calculation of hourly predictions from ADMS-Urban and KCL CMAQ-Urban

allows the performance of the models to be compared against a wide range of air quality
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metrics — and thus allows for a more in-depth analysis of the results. In this section some

basic comparisons are made with common air quality metrics for each pollutant.

Figure 5.1 summarises the comparison of ADMS-Urban and KCL CMAQ-Urban for

three key NO2 metrics. For the annual mean NO2 concentration, both models perform

similarly well, with almost all NO2 predictions within a factor of two. Both models

struggle to predict the Lambeth site well where observed NO2 concentrations are very

high. Both models also perform well for the higher concentration metric of the maximum

daily mean concentration, shown as the middle plot in Figure 5.1. A more limited

evaluation of the number of hours where NO2 exceeds 200 µg m
−3 (because very few

sites have exceedances) shows that this is a difficult metric for the models to predict well.
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F .: Comparison of modelled and observed annual mean, maximum daily mean and num-

ber of hours >200 µg m−3 for NO2 concentrations for ADMS-Urban and KCL CMAQ-Urban.

The analysis reveals that annual mean O3 concentrations are predicted well by both

models, shown in the left hand plot of Figure 5.2. Both models comfortably predict O3

concentrations within a factor of two for all sites. ADMS-Urban does rather better at

predicting the maximum daily rolling 8-hour mean O3 concentration (middle plot), where

KCL CMAQ-Urban has a tendency to overestimate concentrations. A much tougher

statistic for both models is the number of days where rolling 8-hour mean concentrations

are greater than 100 µg m−3 (right-hand plot). Interestingly in this case, KCL CMAQ-

Urban does better than ADMS-Urban, although both models tend to overestimate the

total number of days. The performance of the models is therefore dependent on some

extent on the metric being considered, but across a wider range of metrics ADMS-Urban

tends to have a better performance than KCL CMAQ-Urban.

Two PM10 metrics are shown in Figure 5.3: the annual mean PM10 concentration

and the number of days where PM10 is >50 µg m−3. As noted previously the KCL

CMAQ-Urban model models the PM10 concentrations explicitly and tends to underes-

timate concentrations, and this is the behaviour seen in Figure 5.3. It is interesting to

note however that the KCL CMAQ-Urban and the ADMS-Urban results are similar

apart from an offset of about 5 µg m−3. The performance of both models for the London

increment is similar, but the regional component is clearly different in each case. In terms

of the number of days where PM10 is >50 µg m−3, ADMS-Urban again performs better

overall, although both models tend to underestimate the total number of days.

Threshold-type statistics can be very difficult for models to predict well when concen-

trations are close to the threshold and this is a trait common across all pollutants. Only a

small uncertainty in the predicted concentration can have a large effect on the threshold

statistic. This behaviour is seen for NO2 (hours >200 µg m−3), O3 (days where the max-

imum rolling 8-hour mean is >100 µg m−3) and PM10 (days >50 µg m−3). While these
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F .: Comparison of modelled and observed annual mean, maximumdaily 8-hourmean and

number of days the rolling 8 hour mean is >100 µg m−3 for O3 concentrations for ADMS-Urban

and KCL CMAQ-Urban.
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F .: Comparison of modelled and observed annual mean and the number of days

>50 µg m−3 for PM10 concentrations for ADMS-Urban and KCL CMAQ-Urban.

statistics are relevant from a health-evidence perspective they do not lend themselves

to accurate prediction by models. It is the case however that these types of model can

predict high concentration metrics well but their performance for threshold-type statistics

tend to be much worse. For example, in Figure 5.2 it can be seen that both ADMS-Urban

and KCL CMAQ-Urban predict the maximum daily 8-hour mean O3 concentration well

but are much worse at predicting the number of days where the threshold of 100 µg m−3

is exceeded.

5.3 A closer look at hourly predictions

Bivariate polar plots provide a useful approach for comparing models with measurements

when hourly data are available (D. C. Carslaw, Beevers et al. 2006; D. C. Carslaw and

Ropkins 2012). They provide a tough test of models because models not only need to

estimate the absolute magnitudes of concentrations well, but they also need to capture

the wind speed and wind direction characteristics of the dispersion. The latter point

can provide information on whether sources have been modelled adequately or indeed

whether sources even exist in the model to begin with. Three examples are given for NOx

that highlights these issues.

In Figure 5.4 polar plots are shown for the North Kensington background site. Both

models do well in capturing the nature of this site in that the highest concentrations are

predicted at the lowest wind speeds. This behaviour is typical of a backgroundmonitoring
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sites where concentrations are strongly influenced by well-mixed sources and where a

stable atmosphere (i.e. low wind speeds) leads to higher ground-level concentrations.

There is a tendency of both models to overestimate NOx concentrations at low wind

speeds when the wind is from the east i.e. is from the direction of central London. This

behaviour could be caused by insufficient dispersion of area or volume sources under low

wind speed conditions in the model.

The ADMS-Urban model does tend to predict higher concentrations at low wind

speeds, which could be due perhaps to differences in source apportionment. However,

as Table 5.6 shows there is not much difference between the source apportionment of

ADMS-Urban and ERG-Toolkit at this site.5 The differences may arise due to how the

sources have been parameterised in the first place e.g. initial mixing depth of volume

sources. In should be noted that both models overestimate NOx concentrations at North

Kensington (measured = 49 µg m−3; ADMS-Urban = 73 µg m−3 and KCLCMAQ-Urban

= 64 µg m−3).

Note that in Figure 5.4 to Figure 5.10 use is made of the meteorological data used in

each model i.e. surface measurements from Heathrow for ADMS-Urban and the WRF

model for KCL CMAQ-Urban.

T .: Mean source contributions to NOx concentrations by model and major source category

for the North Kensignton site (µg m−3).

variable ADMS-Urban BRUTAL ERG-Toolkit PCM

cars 12.1 13.3 16.3 0.0

LGVs 5.5 3.8 5.2 0.0

HGVs 7.9 6.9 5.8 0.0

Bus 5.4 10.3 7.4 0.0

roads 0.0 0.0 0.0 31.5

gas 16.2 21.9 16.3 23.4

other.tran 13.2 12.7 10.8 9.4

background 13.0 11.5 13.5 10.8

other 0.9 1.5 0.5 0.8

Figure 5.5 shows a different characteristic of model performance where NOx concen-

5This analysis assumes that ERG-Toolkit and KCL CMAQ-Urban results in a similar source apportion-

ment.
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F .: Bivariate polar plot of NOx concentration at the North Kensington site comparing

ADMS-Urban and the KCL CMAQ-Urban models with measurements.
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trations at the London Bloomsbury site are considered. In this case both models fail to

capture higher concentrations to the north-west, which other analysis has shown is po-

tentially due to a local NOx combustion source. Sources such as these are not adequately

quantified in the LAEI and the poor model performance in this case is more to do with

the emissions inventory rather than the models. Indeed, a consideration of other sites

shows that there are many such sources that are inadequately quantified in the emissions

inventories, which clearly limits the accuracy of model predictions.
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F .: Bivariate polar plot of NOx concentration at the London Bloomsbury site comparing

ADMS-Urban and the KCL CMAQ-Urban models with measurements.

In the third example concentrations at the Marylebone Road site are considered. The

Marylebone Road site is in a street canyon location and the configuration of the canyon

has a strong effect on how vehicle emissions disperse. In particular, when the wind is from

the south there is a strong re-circulation effect and concentrations remain high even at

relatively high wind speeds, as shown on the right-hand panel of Figure 5.6. In this case,

these complex mixing patterns are not captured by either model.6 Clearly, it would not be

expected that these models would capture very local influences due to complex dispersion

and this again limits the performance of the models at sites where local dispersion is

strongly influenced by local effects.

In fact, problems with the model predictions at this location can be seen in a scatter

plot, as shown in Figure 5.7 for NOx. Plotting the data in this way reveals that both

models show a bimodal distribution where significant numbers of predictions are either

above or below the measured value. Figure 5.7 indicates that at this location the models

6Note, both models effectively used the OSPM street canyon model in these situations; or variant of.
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F .: Bivariate polar plot of NOx concentration at the Marylebone Road site comparing

ADMS-Urban and the KCL CMAQ-Urban models with measurements.
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tend to either over or under-predict concentrations. As it will be shown, this pattern of

predictions is indicative of the models failing to capture the street canyon recirulation at

this location.

While it is straightforward to compare models using various statistics and plots, it is

harder to pin down the reasons for poor model performance. One method is to consider

conditional analysis. Such an analysis can not only highlight where a model performs

poorly — but importantly also considers the behaviour of other variables at the same

time. By considering other variables in this way it can be easier to identify some of the

potential reasons for poor model performance. In addition, analysing measurements in an

identical way, so that they represent a ‘perfect model’ for comparison, it can be readily

seen where model where models differ from reality.

Using these conditional approaches, the performance of the models at Marylebone

Road can be analysed as shown in Figure 5.8. In Figure 5.8 the conditional quantile

plot (left) shows that when the NOx predictions are low, the observed NOx is higher and

when the predictions of NOx are high the observed NOx is lower. The plot is constructed

by dividing the predicted concentrations into intervals. For each of these intervals the

corresponding measurements are considered and their median values together with the

spread in values (between the 25-75th and 10-90th percentile) are calculated. A perfect

model would lie on the blue 1:1 line i.e. would have an identical median value and very

small spread in concentrations. Indeed, a ‘perfect’ model is shown in the bottom panels

of the plots in Figure 5.8. Taking predicted concentrations of about 700 µg m−3 both

models show that the corresponding measurements tend to be lower (about 500 µg m−3).

The plot also shows for the interval around 700 µg m−3 there is a large spread in observed

values — the 90th percentile range covers a range from 100 to 800 µg m−3.

Also shown in Figure 5.8 is the corresponding proportion of wind speed intervals, which

highlights that when NOx is underestimated (⪅200 µg m−3 NOx) the wind speed tends

to be high — and when NOx is overestimated the wind speed tends to be low for both

models. The performance of both models is very similar. The measured values (bottom

plots of Figure 5.8) show that across most of the range of NOx concentrations there is a

roughly equal split in corresponding wind speed intervals. It is only for very high NOx
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F .: Left: conditional quantile plot of NOx performance at Marylebone Road. The blue

line shows the results for a perfect model. The red line shows the median value of the predictions.

The shading shows the predicted quantile intervals i.e. the 25/75th and the 10/90th. A perfect

model would lie on the blue line and have a very narrow spread. There is still some spread because

even for a perfect model a specific quantile interval will contain a range of values. However, for

the number of bins used in this plot the spread will be very narrow, as shown by the results in the

“measured” panel. Finally, the shaded histogram shows the counts of predicted values and the

blue histogram the counts of the observed values. Right: the plot shows the proportion of NOx

prediction intervals by wind speed interval.
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F .: Left: conditional quantile plot of NOx performance at Marylebone Road. The blue

line shows the results for a perfect model. The red line shows the median value of the predictions.

The shading shows the predicted quantile intervals i.e. the 25/75th and the 10/90th. A perfect

model would lie on the blue line and have a very narrow spread. There is still some spread because

even for a perfect model a specific quantile interval will contain a range of values, as shown by

the results in the “measured” panel. However, for the number of bins used in this plot the spread

will be very narrow. Finally, the shaded histogram shows the counts of predicted values and the

blue histogram the counts of the observed values. Right: the plot shows the proportion of NOx

prediction intervals by wind sector.
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concentrations that lowwind speeds are important for measured values. The most striking

feature of the measurements (but not the predictions) is that when NOx concentrations

are high (>500 µg m−3) there is also a relatively high proportion of high wind speeds.

For example, when the concentration of NOx is ≈500 µg m−3 approximately 25% of the

time the wind speed is in the highest interval (5.6–15.5 m s−1) — but there are no such

conditions present for predicted concentrations of NOx at this level.

The conditional quantile plots are shown for wind sector (northerly and southerly

component wind direction) in Figure 5.9. This Figure shows for measured concentrations

(bottom plots of Figure 5.9), when the concentration of NOx is low the wind direction is

dominated by northerly winds. This behaviour is in contrast to the predictions from both

models, where low NOx concentration predictions tend to be associated with a higher

proportion of southerly winds. Conversely, as concentrations of NOx increase there is an

increasing proportion of southerly winds.

Figure 5.8 and Figure 5.9 highlight that the models fail to adequately capture the

strong street canyon recirculation at Marylebone Road. When the wind is from the south

the recirculation results in high concentrations of NOx as the wind blows the vehicle

emissions toward the monitor. Conversely, when the wind is from the north, ‘fresh’ air is

brought down to the monitor resulting in lower NOx concentrations. It should be noted

that at most sites both models tend to capture the wind speed and direction characteristics

of measured concentrations quite well. Nevertheless, sites such as Marylebone Road are

important because concentrations and exceedances of EU Limit Values are higher than

at many other sites and therefore it is important that models are capable of producing

reasonable predictions.

Both models actually predict annual mean NOx at Marylebone Road well (measured

= 312 µg m−3; ADMS-Urban = 321 µg m−3 and KCL CMAQ-Urban = 266 µg m−3).

However, these results hide the fact that the predictions are arrived at by overestimating

concentrations considerably when the wind is from the north and underestimating when

thewind is from the south. These characteristics will also affect estimates of other statistics

such as the number of hours NO2 is >200 µg m−3, for example. Indeed it can be shown

that based on measurements 95% of the hours where NO2 is >200 µg m−3 the wind is

from the south. For the models, ADMS-Urban and KCL CMAQ-Urban the proportion

is 46% i.e. roughly half the hours when NO2 >200 µg m−3 occur when the wind in

from the north. There are many situations in modelling such as this i.e. where a model

‘gets it right for the wrong reasons’. The extent to which this matters will depend on the

context and it may be reasonable to accept such models represent ‘typical’ conditions.

For example, it is likely that if the Marylebone Road site was located on the north side of

the road, exceedances of the hourly mean NO2 Limit Value would be very low— but

the models would predict a much higher number. These issues are however important for

some situations when attempting to account for model performance at specific receptor

locations.

Figure 5.10 shows the Conditional Probability Function (CPF) for NO2 concentrations,

with the aim of highlighting those conditions when the hourly limit value for NO2

is exceeded. This plot shows the probability of NO2 concentrations exceeding the

94th percentile, which in this case has an equivalent NO2 concentration of 201 µg m
−3

i.e. very close to the hourly limit value. What is clear from Figure 5.10 is that for

measured concentrations the highest probabilities are associated with winds from the

south and in particular the south-west. The probability of there being concentrations

greater than 201 µg m−3 NO2 when the wind is from the north are effectively zero; which
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F .: Conditional Probability Function applied to a bivariate polar plot of NO2 con-

centration at the Marylebone Road site comparing ADMS-Urban and the KCL CMAQ-Urban

models with measurements. The 94th percentile is considered, which is equivalent to hourly

concentrations of NO2 >200 µg m−3.

again emphasises the importance of street canyon recirculation on NO2 exceedances.

Furthermore, these high concentrations are possible even under strong wind speeds up to

about 10 m s−1. In contrast the models show that concentrations of NO2 only exceed

201 µg m−3 under very low wind speed conditions (less than ≈2 m s−1); from almost any

wind direction. In other words, the conditions leading to exceedances of the hourly limit

value for NO2 differ markedly between the measurements and models.

5.3.1 OSPM model predictions

Both the ADMS-Urban and KCL CMAQ-Urban models use an implementation of the

OSPM street canyon model (Berkowicz 2000). OSPM has been extensively tested

and used throughout Europe (Kakosimos et al. 2010; Kukkonen, Partanen et al. 2003;

Kukkonen, Valkonen et al. 2000). These validation studies generally show that OSPM

performs well in a wide range of situations. It is useful to know therefore how well the

direct use of the model captures the joint wind speed-direction variation of concentrations

in a street canyon location. It is beyond the scope of this report to set up OSPM for

a specific location such as Marylebone Road. However, it is instructive to apply the

same techniques as used in this report to OSPM results from a street canyon location in

Denmark. Data were obtained from Aarhus University, Denmark for 2009.7

Figure 5.12 shows the polar plot for the Jagtvej site in Copenhagen. The site is located

on a straight road at a +30 degrees orientation to north on the east side of the road.

Street canyon recirculation is apparent in both the measured and modelled concentration

distribution shown in Figure 5.12 i.e. the highest concentrations of NOx when the wind

is from the east. This concentration distribution is in marked contrast to that seen in

Figure 5.6.

While the Jagtvej site might be considered as ‘ideal’ i.e. a uniform street canyon where

the OSPM model has been extensively tested, it does nevertheless capture the important

recirculation that neither ADMS-Urban nor KCL CMAQ-Urban do. Clearly, further

investigations of the use of OSPM or similar canyon models for use in the UK would be

beneficial.

7The data can be downloaded from http://www.dmu.dk/en/air/models/background/ospmtool/.

http://www.dmu.dk/en/air/models/background/ospmtool/
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F .: Map showing the location of the Jagtvej air pollution monitoring site in Copenhagen.
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F .: Comparison of measured and modelled NOx using the OSPM model.

5.4 Hourly NOx-NO2 relationships

The hourly models allow an assessment to be made of the relationship between NOx

and NO2. For each site the concentration of NOx has been divided into intervals (0–5,

5–10 µg m−3, …) and the mean value of NO2 calculated. The ratio of NO2:NOx was

then calculated by site and NOx interval. Table 5.7 gives the model evaluation statistics

for the NO2:NOx ratio, split by site type and model. Overall, the KCL CMAQ-Urban

model tends to have better performance, but the differences are small for most site types.

At kerbside sites, KCL CMAQ-Urban tends to underestimate the NO2/NOx ratio where

the 𝑁𝑀𝐵 is −0.09. However, the negative bias for ADMS-Urban is larger at −0.20. At

roadside sites KCL CMAQ-Urban has a small positive bias and ADMS-Urban a small

negative bias. For other site types there is more agreement between the two models.



5 Analysis of hourly results 45

T .: Performance of ADMS-Urban and KCL CMAQ-Urban for NO2:NOx ratio by site

type and model. Note for site type Krbs = kerbside, Rdsd = roadside, Sbrb = suburban and UrbB

= urban background.

site type model n FAC2 MB MGE NMB NMGE RMSE r COE

Krbs KCL-CMAQ-urban 426 1.00 -0.04 0.05 -0.09 0.12 0.06 0.91 0.40

Krbs ADMS-Urban 457 1.00 -0.08 0.08 -0.20 0.20 0.10 0.85 -0.08

Rdsd KCL-CMAQ-urban 714 1.00 0.02 0.04 0.05 0.09 0.05 0.97 0.67

Rdsd ADMS-Urban 839 1.00 -0.01 0.04 -0.03 0.11 0.06 0.93 0.64

Sbrb KCL-CMAQ-urban 205 1.00 0.04 0.05 0.07 0.09 0.06 0.98 0.72

Sbrb ADMS-Urban 318 0.99 0.03 0.06 0.07 0.13 0.07 0.96 0.68

UrbB KCL-CMAQ-urban 293 1.00 0.00 0.03 0.01 0.06 0.04 0.98 0.82

UrbB ADMS-Urban 381 1.00 -0.02 0.05 -0.04 0.11 0.06 0.98 0.72
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F .: Relationship between NO2/NOx ratio and NOx concentration for ADMS-Urban,

KCL CMAQ-Urban and measurements. Note that the x-axis is on a log10 scale.

A summary of the relationship between NOx and NO2/NOx for all sites is shown in

Figure 5.13. The results show that both models tend to capture the NO2/NOx ratio well

at each site, but there is a tendency for ADMS-Urban to underestimate the ratio. At

higher concentrations of NOx where primary NO2 will be more important (particularly at
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roadside and kerbside sites) there tends to be better agreement between the two models,

suggesting the difference in approach to NO2-NO-O3 chemistry has an important effect

controlling the differences between the models.

Taken as a whole however, both ADMS-Urban and KCL CMAQ-Urban capture

the important features of the relationship between NOx and NO2 across a wide range

of site types and NOx and NO2 concentrations. Some of the differences will also be

due to assumptions regarding the primary NO2 emission. The ADMS-Urban model for

road vehicles assumes a fixed value of 22% for primary NO2 for all road types. KCL

CMAQ-Urban varies the primary NO2 assumed by vehicle type and therefore treats each

road specifically. These different approaches could account for some of the differences

seen in the comparisons of NO2/NOx ratio. An advantage both these models have over

models that predict annual means is the ability to consider the relationships between

variables in more depth. The good performance in describing the non-linear relationship

between NOx and NO2 concentration across a wide range of sites (and wide range of

atmospheric conditions from NOx to O3-limited), also provides confidence that the

changes predicted by these models are also likely to be good.

5.5 Performance against the new Daily Air Quality Index

This section briefly considers the performance of the models against the Defra new

daily air quality index. More details concerning the index can be found at http://

uk-air.defra.gov.uk/air-pollution/daqi (COMEAP 2011). The air quality index

is shown in Table 5.8. The index is more relevant to air quality forecasting, but both

models considered in this section can in principle be used (or are used) for this purpose

and it is worth considering their performance. Note that the indexes are calculated for

different averaging times dependent on the pollutant: rolling 8-hour mean for O3, hourly

means for NO2 and a fixed 24-hour mean for PM10 and PM2.5.

A common approach to evaluate the quality of forecast predictions is to consider the

categorical prediction e.g. was a ‘high’ prediction forecast by the model? In this case the

response is yes or no. There are various methods for evaluating the quality of predictions

for these cases and Stephenson (2000) explores approaches based on the ‘odds ratio’.

Specifically, the odds ratio skill score is used as a measure of the predictive performance

of models for these situations i.e. where there is a yes/no, TRUE/FALSE outcome. As

mentioned above, these issues are more relevant to models used for forecasting where

the policy maker would like to know whether to issue a warning that a certain level of

concentration is likely to be exceeded. This section only considers whether the models

show much bias when it comes to predicting the daily air quality indexes, but could be

extended to consider the odds ratio skill score if it was considered important and useful.

Figure 5.14 to Figure 5.17 show the mean bias (𝑀𝐵) and normalised mean bias (𝑁𝑀𝐵)
for NO2, O3, PM10 and PM2.5 respectively. In these plots the ‘extreme’ Lambeth 4

site has been removed from the comparison. In general it can be seen that the lowest

concentrations tend to be over-estimated by both models most of the time (index = 1), but

the overall tendency is that both models tend to show a negative bias as concentrations

of all species increase. For the most part the performance of the two models is similar, but

the ADMS-Urban model does show less bias for PM10. Again, this might be expected

because CMAQ estimates of PM10 concentration are generally underestimated.

The implications of these results are that the models typically tend to underestimate the

daily air quality index by 2 to 4 levels. A few points should be noted however. First, the

http://uk-air.defra.gov.uk/air-pollution/daqi
http://uk-air.defra.gov.uk/air-pollution/daqi
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T .: The new Defra daily air quality index (values in µg m−3).

Band Description NO2 O3 PM10 PM2.5

1 Low 0–66 0–33 0–16 0–11

2 Low 67–133 34–65 17–33 12–23

3 Low 134–199 66–99 34–49 24–34

4 Moderate 200–267 100–120 50–58 35–41

5 Moderate 268–334 121–140 59–66 42–46

6 Moderate 335–399 141–159 67–74 47–52

7 High 400–467 160–187 75–83 53–58

8 High 468–534 188–213 84–91 59–64

9 High 535–599 214–239 92–99 65–69

10 Very High 600 or more 240 or more 100 or more 70 or more
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F .: Comparison of model performance (mean bias, 𝑀𝐵 and normalised mean bias,

𝑁𝑀𝐵) against the new air quality index for NO2 concentrations.
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F .: Comparison of model performance (mean bias, 𝑀𝐵 and normalised mean bias,

𝑁𝑀𝐵) against the new air quality index for O3 concentrations.

analysis in this section is specific to the 15 receptor locations considered in the analysis.

Second, if the models were actually used in ‘forecast mode’ they would rely on forecast

meteorology rather than local surface measurements. The uncertainty in the predictions

could therefore be higher than is given here. It should also be noted that these comparisons

require the models to get the timing of the predicted index correct.
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F .: Comparison of model performance (mean bias, 𝑀𝐵 and normalised mean bias,

𝑁𝑀𝐵) against the new air quality index for PM10 concentrations.
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F .: Comparison of model performance (mean bias, 𝑀𝐵 and normalised mean bias,

𝑁𝑀𝐵) against the new air quality index for PM2.5 concentrations.

The forecasting skill of ADMS-Urban and other models will be considered in more

depth in subsequent work.
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B Model performance evaluation statistics

There are a very wide range of evaluation statistics that can be used to assess model

performance. There is, however, no single statistic that encapsulates all aspects of interest.

For this reason it is useful to consider several performance statistics and also to understand

the sort of information or insight they might provide. The performance statistics used

here have mostly been guided by D et al. 2010.

In the following definitions, 𝑂𝑖 represents the 𝑖th observed value and 𝑀𝑖 represents the

𝑖th modelled value for a total of 𝑛 observations.

Fraction of predictions within a factor or two, FAC2

The fraction of modelled values within a factor of two of the observed values are the

fraction of model predictions that satisfy:

0.5 ≤
𝑀𝑖

𝑂𝑖
≤ 2.0 (1)

Mean bias, MB

Themean bias provides a good indication of themean over or under estimate of predictions.

Mean bias in the same units as the quantities being considered.

𝑀𝐵 =
1
𝑛

𝑁
󰡗
𝑖=1

𝑀𝑖 − 𝑂𝑖 (2)

Mean Gross Error, MGE

The mean gross error provides a good indication of the mean error regardless of whether

it is an over or underestimate. Mean gross error is in the same units as the quantities being

considered.

𝑀𝐺𝐸 =
1
𝑛

𝑁
󰡗
𝑖=1

|𝑀𝑖 − 𝑂𝑖| (3)

Normalised mean bias, NMB

The normalised mean bias is useful for comparing pollutants that cover different concen-

tration scales and the mean bias is normalised by dividing by the observed concentration.

𝑁𝑀𝐵 =

𝑛
∑
𝑖=1

𝑀𝑖 − 𝑂𝑖

𝑛
∑
𝑖=1

𝑂𝑖

(4)

Normalised mean gross error, NMGE

The normalised mean gross error further ignores whether a prediction is an over or

underestimate.
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𝑁𝑀𝐺𝐸 =

𝑛
∑
𝑖=1

|𝑀𝑖 − 𝑂𝑖|
𝑛

∑
𝑖=1

𝑂𝑖

(5)

Root mean squared error, RMSE

The RMSE is a commonly used statistic that provides a good overall measure of how

close modelled values are to predicted values.

𝑅𝑀𝑆𝐸 = 󰝔

𝑛
∑
𝑖=1

(𝑀𝑖 − 𝑂𝑖)2

𝑛 󰝕
1/2

(6)

Correlation coefficient, r

The (Pearson) correlation coefficient is a measure of the strength of the linear relationship

between two variables. If there is perfect linear relationship with positive slope between

the two variables, r = 1. If there is a perfect linear relationship with negative slope between

the two variables r = −1. A correlation coefficient of 0 means that there is no linear

relationship between the variables.

𝑟 =
1

(𝑛 − 1)

𝑛
󰡗
𝑖=1

⎛⎜
⎝

𝑀𝑖 − 𝑀
𝜎𝑀

⎞⎟
⎠

⎛⎜
⎝

𝑂𝑖 − 𝑂
𝜎𝑂

⎞⎟
⎠

(7)

Coefficient of Efficiency, COE

The Coefficient of Efficiency based on L and MC (2012) and L and

MC J (1999). There have been many suggestions for measuring model performance

over the years, but the COE is a simple formulation which is easy to interpret.

A perfect model has a COE = 1. As noted by Legates and McCabe although the COE

has no lower bound, a value of COE = 0.0 has a fundamental meaning. It implies that

the model is no more able to predict the observed values than does the observed mean.

Therefore, since the model can explain no more of the variation in the observed values

than can the observed mean, such a model can have no predictive advantage.

For negative values of COE, the model is less effective than the observed mean in

predicting the variation in the observations.

𝐶𝑂𝐸 = 1.0 −

𝑛
∑
𝑖=1

|𝑀𝑖 − 𝑂𝑖|
𝑛

∑
𝑖=1

|𝑂𝑖 − 𝑂|
(8)



C Code used to produce outputs 55

C Code used to produce outputs

This section contains all the code that produces the Figures and Tables. The data used in

this report are stored in a dropbox folder owned by David Carslaw. Users of the data can

contact David Carslaw at mailto:david.carslaw@kcl.ac.uk to request access. The

data itself can then be downloaded to a suitable local location. Note that in order for the

code to run, users would need to change the path of some of the file locations. There is

also a ReadMe.txt file that should be read.

## ----loadPackages--------------------------------------------------------

library(openair)

library(plyr)

library(ggplot2)

library(xtable)

library(reshape2)

## set ggplot plots to B&W

theme_set(theme_bw())

theme_update(strip.background = element_rect(colour = 'black'))

## make sure wd is correctly set

setwd("~/Projects/modelEvaluation/phase2/urban/")

## ----loaddata, cache=FALSE-----------------------------------------------

load("./data/sourceApp.Rdata")

## catergorise as roadside or background

id <- grep("urban", nox.SA$site.type)

nox.SA$agg.type <- "roadside"

nox.SA$agg.type[id] <- "background"

id <- grep("urban", pm10.SA$site.type)

pm10.SA$agg.type <- "roadside"

pm10.SA$agg.type[id] <- "background"

id <- grep("urban", pm25.SA$site.type)

pm25.SA$agg.type <- "roadside"

pm25.SA$agg.type[id] <- "background"

## ----loadHourly----------------------------------------------------------

## urban measurements

load("./data/urbanMeas.RData")

load("./data/hourlyPreds.RData")

## heathrow met and WRF data

load("./data/metData.RData")

met <- subset(met, select = c(date, ws, wd))

CERC.hourly$data <- "ADMS-Urban"

CERC.hourly <- subset(CERC.hourly, scenario == "Base")

CERC.hourly <- merge(CERC.hourly, met, by = "date")

CERC.hourly <- merge(CERC.hourly, urban.meas, by = c("code", "date"),

suffixes = c(".mod", ".obs"))

KCL.hourly$data <- "KCL-CMAQ-urban"

KCL.hourly$code <- as.character(KCL.hourly$code)

KCL.hourly <- subset(KCL.hourly, scenario == "Base")

KCL.hourly <- merge(KCL.hourly, wrfMet, by = "date")

KCL.hourly <- merge(KCL.hourly, urban.meas, by = c("code", "date"),

suffixes = c(".mod", ".obs"))

allData <- rbind.fill(CERC.hourly, KCL.hourly)

## calculate AQ indexes

labs <- c("Low.1", "Low.2", "Low.3", "Moderate.4", "Moderate.5", "Moderate.6", "High.7",

"High.8", "High.9", "Very High.10")

allData <- ddply(allData, .(data), rollingMean, pollutant="O3.obs",

new.name = "O3.roll.obs")

allData <- ddply(allData, .(data), rollingMean, pollutant="O3.mod",

new.name = "O3.roll.mod")

allData <- transform(allData, index.O3 = cut(O3.roll.obs,

breaks = c(0, 34, 66, 100, 121, 141, 160,

188, 214, 240, 500), labels=labs),

index.NO2 = cut(NO2.obs, breaks = c(0, 67, 134, 200,

268, 335, 400, 468, 535,

600, 1000), labels = labs),

index.NO2.mod = cut(NO2.mod, breaks = c(0, 67, 134, 200,

268, 335, 400, 468, 535,

600, 1000), labels = labs))

## daily means for index for PM10/PM2.5

daily <- ddply(allData, .(data), timeAverage, avg.time = "day")

mailto:david.carslaw@kcl.ac.uk
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daily <- transform(daily, index.PM10 = cut(PM10.obs, breaks = c(0, 17, 34, 50,

59, 67, 75, 84, 92, 100, 500),

labels = labs),

index.PM25 = cut(PM25.obs, breaks = c(0, 12, 24, 35, 42,

47, 53, 59, 65, 70, 500),

labels = labs))

## calculate annual values for simple comparsions

annual <- timeAverage(urban.meas, "year")

## ----SANOx,results='asis',echo=FALSE-------------------------------------

tmp.nox <- ddply(subset(nox.SA, select = c(model, agg.type, variable, value)),

.(model, agg.type, variable), numcolwise(mean))

tmp.nox <- dcast(tmp.nox, ...~ model)

print(xtable(tmp.nox,

caption = "Mean source contributions to \\nox concentrations by model

and major source category for 16 sites (\\ug).",

label = "tab:SANOx",

digits = 1),

size = "footnotesize",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----SANOxPercent,results='asis',echo=FALSE------------------------------

m.nox <- ddply(tmp.nox, .(agg.type), function (x)

100 * sweep(x[, 3:6], 2, colSums(x[, 3:6]), "/"))

m.nox <- data.frame(type = m.nox$agg.type, variable = tmp.nox$variable, m.nox[, 2:5])

print(xtable(m.nox,

caption = "Mean source contributions to \\nox concentrations by

model and major source category for 16 sites (\\%).",

label = "tab:SANOxPercent",

digits =1),

size = "footnotesize",

booktabs = TRUE,

include.rownames = FALSE,

caption.placement = "top")

## ----NOxSA, h=10, w=14, out.width='1\\textwidth'-------------------------

ggplot(nox.SA, aes(model, fill=variable, weight = value)) +

geom_bar(width = 0.5) +

facet_wrap(~ site.name, scales = "free_y") +

scale_fill_brewer(palette = "Set3") +

geom_hline(aes(yintercept = nox), data = nox.meas, lty = 5) +

ylab(quickText("nox (ug/m3)")) +

theme(axis.text.x = element_text(angle= -90, hjust = 0))

## ----statsNOx------------------------------------------------------------

nox.annual <- ddply(nox.SA, .(site.name, model), numcolwise(sum), na.rm=TRUE)

nox.annual <- merge(nox.annual, annual, by.x = "site.name", by.y = "site")

## ----SAPm10,results='asis', echo=FALSE-----------------------------------

tmp.pm10 <- ddply(subset(pm10.SA, select = c(model, agg.type, variable, value)),

.(model, agg.type, variable), numcolwise(mean))

tmp.pm10 <- dcast(tmp.pm10, ...~ model)

print(xtable(tmp.pm10,

caption = "Mean source contributions to \\pmten concentrations

by model and major source category for 16 sites (\\ug).",

label = "tab:SAPm10",

digits = 1),

size = "footnotesize",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----SAPm10Percent,results='asis',echo=FALSE-----------------------------

m.pm10 <- ddply(tmp.pm10, .(agg.type), function (x)

100 * sweep(x[, 3:6], 2, colSums(x[, 3:6]), "/"))

m.pm10 <- data.frame(type = m.pm10$agg.type, variable = tmp.pm10$variable, m.pm10[, 2:5])

print(xtable(m.pm10,

caption = "Mean source contributions to \\pmten concentrations

by model and major source category for 16 sites (\\%).",

label = "tab:SAPm10Percent",

digits = 1),

size = "footnotesize",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----Pm10SA, h=10, w=14, out.width='1\\textwidth'------------------------
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ggplot(pm10.SA, aes(model, fill=variable, weight = value)) +

geom_bar(width = 0.5) +

facet_wrap(~ site.name, scales = "free_y") +

scale_fill_brewer(palette = "Set3") +

geom_hline(aes(yintercept = PM10), data = pm10.meas, lty = 5) +

ylab(quickText("pm10 (ug/m3)")) +

theme(axis.text.x = element_text(angle= -90, hjust = 0))

## ----backSA, h=4, w=7, out.width='0.6\\textwidth'------------------------

back.SA <- read.csv("./data/background_SA.csv",header=TRUE)

ggplot(back.SA, aes(model, fill = component, weight = value)) +

geom_bar(width = 0.5) +

scale_fill_brewer(palette="Set3") +

ylab(quickText("concentration (ug/m3)"))

## ----SAPM25,results='asis',echo=FALSE------------------------------------

tmp.pm25 <- ddply(subset(pm25.SA, select = c(model, agg.type, variable, value)),

.(model, agg.type, variable), numcolwise(mean))

tmp.pm25 <- dcast(tmp.pm25, ...~ model)

print(xtable(tmp.pm25,

caption = "Mean source contributions to \\pmtwo concentrations

by model and major source category for 16 sites (\\ug).",

label = "tab:SAPM25",

digits = 1),

size = "footnotesize",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----SAPM25Percent,results='asis',echo=FALSE-----------------------------

m.pm25 <- ddply(tmp.pm25, .(agg.type), function (x)

100 * sweep(x[, 3:6], 2, colSums(x[, 3:6]), "/"))

m.pm25 <- data.frame(type = m.pm25$agg.type, variable = tmp.pm25$variable, m.pm25[, 2:5])

print(xtable(m.pm25,

caption = "Mean source contributions to \\pmtwo concentrations

by model and major source category for 16 sites (\\%).",

label = "tab:SAPM25Percent",

digits = 1),

size = "footnotesize",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----Pm25SA, h=10, w=14, out.width='1\\textwidth'------------------------

ggplot(pm25.SA, aes(model, fill=variable, weight = value)) +

geom_bar(width = 0.5) +

facet_wrap(~ site.name, scales = "free_y") +

scale_fill_brewer(palette = "Set3") +

geom_hline(aes(yintercept = PM25), data = pm25.meas, lty = 5) +

ylab(quickText("pm25 (ug/m3)")) +

theme(axis.text.x = element_text(angle= -90, hjust = 0))

## ----loadMapData---------------------------------------------------------

load("./data/mapData.RData")

load("./data/grid100.RData")

## ----no2Map,h=7, w=9, out.width='1\\textwidth'---------------------------

scatterPlot(map.data, x="easting", y="northing", z = "no2",

method ="level", x.inc = 1000,

y.inc=1000, limits = c(0, 50), type = "model",

main = NULL)

## ----no2MapHiRes,h=3.5, w=7, out.width='1\\textwidth'--------------------

scatterPlot(grid100, x="easting", y="northing",

z="no2", method ="level", x.inc = 100,

y.inc=100, limits = c(0, 50),

type = "model", main = NULL)

## ----NOxTransect, h=5,w=5,fig.show='hold',out.width='0.49\\textwidth'----

transect <- subset(map.data, northing == 182000)

scatterPlot(transect, x = "easting", y = "nox", group = "model", plot.type = "S",

lwd = 3, ylab = "nox (ug/m3)", key.position = "top")

scatterPlot(transect, x = "easting", y = "no2", group = "model", plot.type = "S",

lwd = 3, ylab = "no2 (ug/m3)", key.position = "top")

## ----NO2exceedcum, h=5,w=5,fig.show='hold',out.width='0.45\\textwidth'----

no2.data <- ddply(map.data, .(model), transform, nox = sort(nox, na.last = TRUE))

no2.data <- ddply(no2.data, .(model), transform, area = 100 * seq(1, length(nox)) / length(nox))

scatterPlot(no2.data, x="nox", y="area", plot.type="l", lwd=4,

group = "model", xlim = c(10, 100), col = "hue",

xlab = "nox (ug/m3)", ylab = "Cumulative area (%)", key.position = "top",
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key.columns = 2)

no2.data <- ddply(map.data, .(model), transform, no2 = sort(no2, na.last = TRUE))

no2.data <- ddply(no2.data, .(model), transform, area = 100 * seq(1, length(no2)) / length(no2))

scatterPlot(no2.data, x="no2", y="area", plot.type="l", lwd=4,

group = "model", xlim = c(10, 60), col = "hue",

xlab = "no2 (ug/m3)", ylab = "Cumulative area (%)", key.position = "top",

key.columns = 2)

no2.data <- ddply(map.data, .(model), transform, ratio = sort(ratio, na.last = TRUE))

no2.data <- ddply(no2.data, .(model), transform, area = 100 * seq(1, length(ratio)) / length(ratio))

scatterPlot(no2.data, x="ratio", y="area", plot.type="l", lwd=4,

group = "model", xlim = c(0.4, 0.8), col = "hue",

xlab = "no2/nox ratio", ylab = "Cumulative area (%)", key.position = "top",

key.columns = 2)

## ----no2noxMap,h=7, w=9, out.width='1\\textwidth'------------------------

scatterPlot(map.data, x="easting", y ="northing", z="ratio", method ="level",

x.inc = 1000, y.inc=1000, type = "model", main = NULL,

limits = c(0.35, 0.9))

## ----pm10Map,h=7, w=9, out.width='1\\textwidth'--------------------------

scatterPlot(map.data, x="easting", y="northing", z="pm10", method ="level", x.inc = 1000,

y.inc=1000, limits = c(15, 30), type = "model", main = NULL)

## ----PMTransect, h=5,w=5,fig.show='hold',out.width='0.49\\textwidth'-----

transectPM <- subset(map.data, northing == 182000)

scatterPlot(transect, x = "easting", y = "pm10", group = "model", plot.type = "S",

lwd = 3, ylab = "pm10 (ug/m3)", key.position = "top")

scatterPlot(transect, x = "easting", y = "pm25", group = "model", plot.type = "S",

lwd = 3, ylab = "pm25 (ug/m3)", key.position = "top")

## ----PM10exceedcum, h=4, w=6, out.width='0.6\\textwidth'-----------------

## calculate areas

pm10.data <- arrange(map.data, model, pm10)

pm10.data <- ddply(pm10.data, .(model), transform, area = 100 * seq(1, length(pm10)) / length(pm10))

scatterPlot(pm10.data, x="pm10", y="area", plot.type="l", lwd=4,

group = "model", xlim = c(15, 25),

xlab = "pm10 (ug/m3)", ylab = "Cumulative area (%)")

## ----pm25Map,h=7, w=9, out.width='1\\textwidth'--------------------------

scatterPlot(map.data, x="easting", y="northing", z="pm25", method ="level", x.inc = 1000,

y.inc=1000, limits = c(8, 18), type = "model", main = NULL)

## ----PM25exceedcum, h=4, w=6, out.width='0.6\\textwidth'-----------------

pm25.data <- arrange(map.data, model, pm25)

pm25.data <- ddply(pm25.data, .(model), transform, area = 100 * seq(1, length(pm25)) / length(pm25))

scatterPlot(pm25.data, x="pm25", y="area", plot.type="l", lwd=4,

group = "model", xlim = c(9, 18),

xlab = "pm25 (ug/m3)", ylab = "Cumulative area (%)")

## ----loadScenarios-------------------------------------------------------

load("./data/scenarios.RData")

## ----scenResults,results='asis',echo=FALSE-------------------------------

print(xtable(ddply(subset(urban.scen, select = -Base), .(pollutant, model),

numcolwise(mean), na.rm=T),

caption = "Effect of the different scenarios by pollutant and model

(\\ug). The base case predictions have been subtracted from each scenario

to show the nett effect on concentrations.",

label = "tab:scenResults",

digits = 1),

size = "small",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----NO2ScenSite, h=4, w=6, out.width='0.7\\textwidth'-------------------

## sort data frame by scenario 1

tmpNO2 <- openair:::sortDataFrame(subset(urban.scen, pollutant == "NO2"), key = c("model", "S1"))

## match sites - PCM has some missing...

scen.sites <- subset(urban.scen, model == "PCM", select = c(code, S1))

scen.sites <- unique(na.omit(scen.sites)$code)

tmpNO2 <- subset(tmpNO2, code %in% scen.sites)

## create index for plotting

tmpNO2 <- ddply(tmpNO2, .(model, pollutant), transform, index = rev(seq_along(model)))

## for NOx

tmpNOx <- openair:::sortDataFrame(subset(urban.scen, pollutant == "NOx"), key = c("model", "S1"))

## match sites - PCM has some missing...

scen.sites <- subset(urban.scen, model == "PCM", select = c(code, S1))

scen.sites <- unique(na.omit(scen.sites)$code)

tmpNOx <- subset(tmpNOx, code %in% scen.sites)

## create index for plotting
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tmpNOx <- ddply(tmpNOx, .(model, pollutant), transform, index = rev(seq_along(model)))

## NOx and NO2

tmpDiff <- merge(subset(tmpNO2, select = c(code, model, S1)), subset(tmpNOx, select = c(code, model, S1)),

by = c("code", "model"))

## plot

scatterPlot(tmpNO2, x = "index", y = "S1", group = "model", pch = NA, plot.type = "l",

lwd = 3, cols = "hue", xlab = "site index", ylab = "delta no2 (ug/m3)")

## ----NO2NOxScenSite, h=4, w=5.5, out.width='0.7\\textwidth'--------------

scatterPlot(tmpDiff, x = "S1.y", y = "S1.x", group = "model", pch = c(15:17,3,2),

cols = "hue",

xlab = "delta nox (ug/m3)", ylab = "delta no2 (ug/m3)")

## ----modStatsNOxhourly,results='asis',echo=FALSE-------------------------

modNOx <- modStats(allData, obs="NOx.obs", mod = "NOx.mod", type = "data", rank.name="data")

modNOx <- melt(modNOx, id.vars = "data")

modNOx <- dcast(modNOx, ... ~ data)

print(xtable(modNOx,

caption = "Performance of \\adms and \\cmaq for \\nox concentrations.",

label = "tab:modStatsNOxhourly",

digits = 2),

size = "small",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----modStatsNO2hourly,results='asis',echo=FALSE-------------------------

modNO2 <- modStats(allData, obs="NO2.obs", mod = "NO2.mod", type = "data", rank.name="data")

modNO2 <- melt(modNO2, id.vars = "data")

modNO2 <- dcast(modNO2, ... ~ data)

print(xtable(modNO2,

caption = "Performance of \\adms and \\cmaq for \\notwo concentrations.",

label = "tab:modStatsNO2hourly",

digits = 2),

size = "small",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----modStatsO3hourly,results='asis',echo=FALSE--------------------------

modO3 <- modStats(allData, obs="O3.obs", mod = "O3.mod", type = "data", rank.name="data")

modO3 <- melt(modO3, id.vars = "data")

modO3 <- dcast(modO3, ... ~ data)

print(xtable(modO3,

caption = "Performance of \\adms and \\cmaq for \\ozone concentrations.",

label = "tab:modStatsO3hourly",

digits = 2),

size = "small",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----modStatsPM10hourly,results='asis',echo=FALSE------------------------

modPM10 <- modStats(allData, obs="PM10.obs", mod = "PM10.mod", type = "data", rank.name="data")

modPM10 <- melt(modPM10, id.vars = "data")

modPM10 <- dcast(modPM10, ... ~ data)

print(xtable(modPM10,

caption = "Performance of \\adms and \\cmaq for \\pmten concentrations.",

label = "tab:modStatsPM10hourly",

digits = 2),

size = "small",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----modStatsPM25hourly,results='asis',echo=FALSE------------------------

modPM25 <- modStats(allData, obs="PM25.obs", mod = "PM25.mod", type = "data", rank.name="data")

modPM25 <- melt(modPM25, id.vars = "data")

modPM25 <- dcast(modPM25, ... ~ data)

print(xtable(modPM25,

caption = "Performance of \\adms and \\cmaq for \\pmtwo concentrations.",

label = "tab:modStatsPM25hourly",

digits = 2),

size = "small",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----prepMetrics---------------------------------------------------------
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## calculate common AQ stats and compare with observed values

obsStats <- aqStats(subset(allData, data == "ADMS-Urban"), pollut="NO2.obs")

obsStats$data <- "observed"

admsStats <- aqStats(subset(allData, data == "ADMS-Urban"), pollut="NO2.mod")

admsStats$data <- "ADMS-Urban"

kclStats <- aqStats(subset(allData, data == "KCL-CMAQ-urban"), pollut="NO2.mod")

kclStats$data <- "KCL-CMAQ-urban"

no2Stats <- rbind.fill(admsStats, kclStats)

no2Stats <- merge(no2Stats, obsStats, by = c("site", "pollutant", "year"),

suffixes = c(".mod", ".obs"))

## calculate common AQ stats and compare with observed values

obsStats <- aqStats(subset(allData, data == "ADMS-Urban"), pollut="O3.obs")

obsStats$data <- "observed"

admsStats <- aqStats(subset(allData, data == "ADMS-Urban"), pollut="O3.mod")

admsStats$data <- "ADMS-Urban"

kclStats <- aqStats(subset(allData, data == "KCL-CMAQ-urban"), pollut="O3.mod")

kclStats$data <- "KCL-CMAQ-urban"

o3Stats <- rbind.fill(admsStats, kclStats)

o3Stats <- merge(o3Stats, obsStats, by = c("site", "pollutant", "year"),

suffixes = c(".mod", ".obs"))

obsStats <- aqStats(subset(allData, data == "ADMS-Urban"), pollut="PM10.obs")

obsStats$data <- "observed"

admsStats <- aqStats(subset(allData, data == "ADMS-Urban"), pollut="PM10.mod")

admsStats$data <- "ADMS-Urban"

kclStats <- aqStats(subset(allData, data == "KCL-CMAQ-urban"), pollut="PM10.mod")

kclStats$data <- "KCL-CMAQ-urban"

pm10Stats <- rbind.fill(admsStats, kclStats)

pm10Stats <- merge(pm10Stats, obsStats, by = c("site", "pollutant", "year"),

suffixes = c(".mod", ".obs"))

## ----NO2Stats, h=4.5,w=4.5,fig.show='hold',out.width='0.32\\textwidth'----

scatterPlot(no2Stats, x = "mean.mod", y = "mean.obs", group = "data.mod",

pch = c(16, 8), mod.line=T, cex = 1.5, xlim = c(0, 220),

ylim = c(0, 220), key.position = "top", key.columns = 2,

key.title = "model", xlab = "modelled no2 (ug/m3)",

ylab = "observed no2 (ug/m3)")

scatterPlot(no2Stats, x = "max.daily.mod", y= "max.daily.obs", group = "data.mod",

pch = c(16, 8), mod.line=T, cex = 1.5, xlim = c(0, 250),

ylim = c(0, 250), key.position = "top", key.columns = 2,

key.title = "model", xlab = "modelled no2 (ug/m3)",

ylab = "observed no2 (ug/m3)")

scatterPlot(no2Stats, x = "hours.gt.200.mod", y = "hours.gt.200.obs", group = "data.mod",

pch = c(16, 8), mod.line=T, cex = 1.5, key.position = "top", key.columns = 2,

key.title = "model", xlab = "modelled hours no2 > 200 ug/m3",

ylab = "observed hours no2 > 200 ug/m3", xlim=c(1, 5000), ylim=c(1, 5000))

## ----O3Stats, h=4.5,w=4.5,fig.show='hold',out.width='0.32\\textwidth'----

scatterPlot(o3Stats, x = "mean.mod", y= "mean.obs", group = "data.mod",

pch = c(16, 8), mod.line=T, cex = 1.5, xlim = c(0, 50),

ylim = c(0, 50), key.position = "top", key.columns = 2,

key.title = "model", xlab = "modelled o3 (ug/m3)",

ylab = "observed o3 (ug/m3)")

scatterPlot(no2Stats, x = "max.rolling.8.mod", y= "max.rolling.8.obs", group = "data.mod",

pch = c(16, 8), mod.line=T, cex = 1.5, xlim = c(0, 250),

ylim = c(0, 250), key.position = "top", key.columns = 2,

key.title = "model", xlab = "modelled o3 (ug/m3)",

ylab = "observed o3 (ug/m3)")

scatterPlot(o3Stats, x = "roll.8.O3.gt.100.mod", y= "roll.8.O3.gt.100.obs", group = "data.mod",

pch = c(16, 8), mod.line=T, cex = 1.5, key.position = "top", key.columns = 2,

key.title = "model", xlab = "modelled days",

ylab = "observed days", xlim=c(1, 40), ylim=c(1, 40))

## ----PM10Stats, h=4.5,w=4.5,fig.show='hold',out.width='0.32\\textwidth'----

scatterPlot(pm10Stats, x = "mean.mod", y = "mean.obs", group = "data.mod",

pch = c(16, 8), mod.line=T, cex = 1.5, xlim = c(0, 42),

ylim = c(0, 42), key.position = "top", key.columns = 2,

key.title = "model", xlab = "modelled pm10 (ug/m3)",

ylab = "observed pm10 (ug/m3)")

scatterPlot(pm10Stats, x = "days.gt.50.mod", y = "days.gt.50.obs", group = "data.mod",

pch = c(16, 8), mod.line=T, cex = 1.5, xlim = c(0, 70),

ylim = c(0, 70), key.position = "top", key.columns = 2,

key.title = "model", xlab = "modelled pm10 (ug/m3)",

ylab = "observed pm10 (ug/m3)")

## ----polarKC1NOx, h=4, w=8, out.width='1\\textwidth'---------------------

tmp <- subset(allData, code == "KC1")
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## add measured for comparison

tmp1 <- subset(tmp, data == "ADMS-Urban")

tmp1 <- transform(tmp1, NOx.mod = NOx.obs, NO2.mod = NO2.obs,

PM10.mod = PM10.obs, PM25.mod = PM25.obs)

tmp1$data <- "MEASURED"

tmp <- rbind(tmp, tmp1)

polarPlot(subset(tmp, code == "KC1"), pollutant="NOx.mod", type = "data",

layout = c(3, 1), limits = c(0, 150))

## ----SANOxKC1,results='asis',echo=FALSE----------------------------------

KC.SA <- ddply(subset(nox.SA, select = c(model, variable, value), site.code =="KC1"),

.(model, variable), numcolwise(mean))

KC.SA <- dcast(KC.SA,... ~ model)

print(xtable(KC.SA,

caption = "Mean source contributions to \\nox concentrations by model and

major source category for the North Kensignton site (\\ug).",

label = "tab:SANOxKC1",

digits = 1),

size = "small",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----polarBL0NOx, h=4, w=8, out.width='1\\textwidth'---------------------

tmp <- subset(allData, code== "BL0")

## add measured for comparison

tmp1 <- subset(tmp, data =="ADMS-Urban")

tmp1 <- transform(tmp1, NOx.mod = NOx.obs, NO2.mod = NO2.obs,

PM10.mod = PM10.obs, PM25.mod = PM25.obs)

tmp1$data <- "MEASURED"

tmp <- rbind(tmp, tmp1)

polarPlot(subset(tmp, code == "BL0"), pollutant="NOx.mod",

type = "data", layout = c(3, 1))

## ----polarMY1NOx, h=4, w=8, out.width='1\\textwidth'---------------------

tmp <- subset(allData, code== "MY1")

## add measured for comparison

tmp1 <- subset(tmp, data =="ADMS-Urban")

tmp1 <- transform(tmp1, NOx.mod = NOx.obs, NO2.mod = NO2.obs,

PM10.mod = PM10.obs, PM25.mod = PM25.obs)

tmp1$data <- "MEASURED"

tmp <- rbind(tmp, tmp1)

polarPlot(subset(tmp, code == "MY1"), pollutant="NOx.mod",

type = "data", layout = c(3, 1))

## ----MY1NOxscatt, h=4, w=10, out.width='0.8\\textwidth'------------------

scatterPlot(subset(allData, code == "MY1"), x = "NOx.obs", y = "NOx.mod", mod.line = TRUE,

type = "data", method = "hexbin", col = "jet",

xlab = "observed nox (ug/m3)",

ylab = "modelled nox (ug/m3)", xbin = 40,

log.x = TRUE, log.y = TRUE, aspect = 1,

trans = function(x) log(x), inv = function(x) exp(x))

## ----condQuantMY1ws, h=7, w=15,fig.keep='last',out.width='1\\textwidth'----

tmp <- subset(allData, code== "MY1")

## add measured for comparison

tmp1 <- subset(tmp, data =="ADMS-Urban")

tmp1 <- transform(tmp1, NOx.mod = NOx.obs, NO2.mod = NO2.obs,

PM10.mod = PM10.obs, PM25.mod = PM25.obs)

tmp1$data <- "MEASURED"

tmp <- rbind(tmp, tmp1)

conditionalEval(tmp, mod = "NOx.mod", obs = "NOx.obs",

type = "data", statistic = "ws", col.var = "Set3")

## ----condQuantMY1Sector, h=7,w=15,fig.keep='last',out.width='1\\textwidth'----

tmp$sector <- "south"

id <- which(tmp$wd <=90 | tmp$wd >=270)

tmp$sector[id] <- "north"

conditionalEval(tmp, mod = "NOx.mod", obs= "NOx.obs",

type = "data", statistic = "sector", col.var = "Set3")

## ----polarMY1NO2, h=4, w=8, out.width='1\\textwidth'---------------------

tmp <- subset(allData, code== "MY1")

## add measured for comparison

tmp1 <- subset(tmp, data =="ADMS-Urban")

tmp1 <- transform(tmp1, NOx.mod = NOx.obs, NO2.mod = NO2.obs,

PM10.mod = PM10.obs, PM25.mod = PM25.obs)

tmp1$data <- "MEASURED"

tmp <- rbind(tmp, tmp1)
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polarPlot(subset(tmp, code == "MY1"), pollutant="NO2.mod", stati="cpf",

percentile=94, type = "data", layout = c(3, 1))

## ----importOSPM, results='hide'------------------------------------------

ospm <- import("./data/OSPM_Validation_Tools_sample.csv", wd = "Wind_dir",

ws = "u_mast")

## ----OSPMpolar,w=7,h=4,results='hide', out.width='0.7\\textwidth'--------

polarPlot(ospm, pollutant=c("cNOX_obs_2", "cNOX_mod_2"), layout = c(2, 1),

limits = c(0, 150))

## ----prepHourlyNO2-------------------------------------------------------

makeNOxNO2 <- function(thecode) {

thedata <- subset(allData, code == thecode, select = c(site, code, data, NOx.obs,

NOx.mod, NO2.obs, NO2.mod))

## add measured at bottom to plot

tmp <- subset(thedata, data == "ADMS-Urban")

tmp$data <- "measured"

tmp <- transform(tmp, NOx.mod = NOx.obs, NO2.mod = NO2.obs)

thedata <- rbind(thedata, tmp)

thedata <- subset(thedata, select = -c(NOx.obs, NO2.obs))

## round nox to interval

thedata$nox <- round_any(thedata$NOx.mod, 5)

thedata <- aggregate(thedata[, c("NOx.mod", "NO2.mod")],

thedata[, c("site", "code", "data", "nox")], mean, na.rm = TRUE)

thedata <- transform(thedata, ratio = NO2.mod / NOx.mod)

thedata

}

## sites to consider

sites <- unique(allData$code)

nox.no2 <- ldply(sites, makeNOxNO2)

stats.ratio <- merge(subset(nox.no2, data == "measured"),

subset(nox.no2, data != "measured"), by = c("site", "nox"))

## get site info

meta <- importMeta(source="kcl")

stats.ratio <- merge(stats.ratio, meta, by = "site")

## ----modStatsRatio,results='asis',echo=FALSE-----------------------------

statsRatio <- modStats(stats.ratio, obs = "ratio.x", mod = "ratio.y",

type = c("site.type", "data.y"), rank = "data.y")

names(statsRatio)[1:2] <- c("site type", "model")

statsRatio[, 1] <- abbreviate(statsRatio[, 1])

print(xtable(statsRatio,

caption = "Performance of \\adms and \\cmaq for \\notwo:\\nox ratio by site type and model.

Note for site type Krbs = kerbside, Rdsd = roadside, Sbrb = suburban and UrbB = urban background. ",

label = "tab:modStatsRatio",

digits = 2),

size = "scriptsize",

booktabs = TRUE,

include.rownames=FALSE,

caption.placement = "top")

## ----NOxNO2Relation, h=10, w=10,fig.show='hold',results='hide', out.width='1\\textwidth'----

scatterPlot(subset(nox.no2, nox >0),

x = "nox", y = "ratio", type = "site",

group = "data", plot.type = "l",

col = c("magenta", "cyan", "grey40"), lwd = 3,

ylab = "no2:nox ratio", xlab = "nox (ug/m3)",

key.position = "top", key.columns = 3,

log.x = TRUE)

## ----AQindexMBNO2,w=6,h=5,fig.show='hold', out.width='0.49\\textwidth'----

res <- modStats(subset(allData, code != "LB4"), obs = "NO2.obs", mod = "NO2.mod",

type = c("index.NO2", "data"), rank.name="data")

scatterPlot(res, x = "index.NO2", y = "MB", group = "data", pch = 16, cex=2,

ref.y=0, ylab = "MB (ug/m3)")

scatterPlot(res, x = "index.NO2", y = "NMB", group = "data", pch = 16, cex=2, ref.y=0)

## ----AQindexMBO3,w=6,h=5,fig.show='hold', out.width='0.49\\textwidth'----

res <- modStats(subset(allData, code != "LB4"), obs = "O3.roll.obs", mod = "O3.roll.mod",

type = c("index.O3", "data"), rank.name="data")

scatterPlot(res, x = "index.O3", y = "MB", group = "data", pch = 16, cex=2, ref.y=0, ylab = "MB (ug/m3)")

scatterPlot(res, x = "index.O3", y = "NMB", group = "data", pch = 16, cex=2, ref.y=0)

## ----AQindexMBPM10,w=6,h=5,fig.show='hold', out.width='0.49\\textwidth'----

res <- modStats(subset(daily, site != "Lambeth - Brixton Road"), obs = "PM10.obs", mod = "PM10.mod",

type = c("index.PM10", "data"), rank.name="data")

scatterPlot(res, x = "index.PM10", y = "MB", group = "data", pch = 16, cex=2, ref.y=0, ylab = "MB (ug/m3)")

scatterPlot(res, x = "index.PM10", y = "NMB", group = "data", pch = 16, cex=2, ref.y=0)

## ----AQindexMBPM25,w=6,h=5,fig.show='hold', out.width='0.49\\textwidth'----
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res <- modStats(subset(daily, site != "Lambeth - Brixton Road"), obs = "PM25.obs", mod = "PM25.mod",

type = c("index.PM25", "data"), rank.name="data")

scatterPlot(res, x = "index.PM25", y = "MB", group = "data", pch = 16, cex=2, ref.y=0, ylab = "MB (ug/m3)")

scatterPlot(res, x = "index.PM25", y = "NMB", group = "data", pch = 16, cex=2, ref.y=0)

## ----NOxSAScaled, h=10, w=14, out.width='1\\textwidth'-------------------

## proportion plot

ggplot(nox.SA, aes(model, fill=variable, weight = value)) +

geom_bar(width = 0.5, position="fill") +

facet_wrap(~ site.name) +

scale_fill_brewer(palette="Set3") +

theme(axis.text.x = element_text(angle= -90, hjust = 0))

## ----Pm10SAScaled, h=10, w=14, out.width='1\\textwidth'------------------

## proportion plot

ggplot(pm10.SA, aes(model, fill=variable, weight = value)) +

geom_bar(width = 0.5, position="fill") +

facet_wrap(~ site.name) +

scale_fill_brewer(palette="Set3") +

theme(axis.text.x = element_text(angle= -90, hjust = 0))

## ----Pm25SAScaled, h=10, w=14, out.width='1\\textwidth'------------------

## proportion plot

ggplot(pm25.SA, aes(model, fill=variable, weight = value)) +

geom_bar(width = 0.5, position="fill") +

facet_wrap(~ site.name) +

scale_fill_brewer(palette="Set3") +

theme(axis.text.x = element_text(angle= -90, hjust = 0))
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