Ratification of data produced by the UK Ambient Automatic Hydrocarbon Air Quality Network, 1 April 2004 to 30 June 2004

A report produced for the Department for Environment, Food and Rural Affairs, the Scottish Executive, the Welsh Assembly Government and the Department of the Environment in Northern Ireland

AEAT/ENV/R/1869 Issue 1
December 2004
Ratification of data produced by the UK Ambient Automatic Hydrocarbon Air Quality Network, 1 April 2004 to 30 June 2004

A report produced for the Department for Environment, Food and Rural Affairs, the Scottish Executive, the Welsh Assembly Government and the Department of the Environment in Northern Ireland

AEAT/ENV/R/1869 Issue 1
December 2004
<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratification of data produced by the UK Ambient Automatic Hydrocarbon Air Quality Network, 1 April 2004 to 30 June 2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department for Environment, Food and Rural Affairs, the Scottish Executive, the Welsh Assembly Government and the Department of the Environment in Northern Ireland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customer reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMP 2423</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confidentiality, copyright and reproduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copyright AEA Technology plc. All rights reserved. Enquiries about copyright and reproduction should be addressed to the Commercial Manager, AEA Technology plc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED48202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEAT/ENV/R/1869</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue 1</td>
</tr>
</tbody>
</table>

AEA Technology plc

Netcen
Building 551
Harwell
Didcot
Oxon, OX11 0QJ

Telephone 0870 1905425
Facsimile 0870 1906377

Netcen is an operating division of AEA Technology plc
AEA Technology is certificated to BS EN ISO9001:(2000)

<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Emma James</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reviewed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Dumitrean</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steve Telling</td>
</tr>
</tbody>
</table>
Contents

1 Introduction 4

2 Hydrocarbon Data Quality 5

3 Monthly Data Reports 6

3.1 CARDIFF
- **April**
 - 3.1.1 Data Quality Codes
 - 3.1.2 Missing Data - All hydrocarbons
 - 3.1.3 Missing Data - Specific hydrocarbons
- **May**
 - 3.1.2.1 Data Quality Codes
 - 3.1.2.2 Missing Data - All hydrocarbons
 - 3.1.2.3 Missing Data - Specific hydrocarbons
- **June**
 - 3.1.3.1 Data Quality Codes
 - 3.1.3.2 Missing Data - All hydrocarbons
 - 3.1.3.3 Missing Data - Specific hydrocarbons

3.2 GLASGOW
- **April**
 - 3.2.1 Data Quality Codes
 - 3.2.1.2 Missing Data - All hydrocarbons
 - 3.2.1.3 Missing Data - Specific hydrocarbons
- **May**
 - 3.2.2 Data Quality Codes
 - 3.2.2.2 Missing Data - All hydrocarbons
 - 3.2.2.3 Missing Data - Specific hydrocarbons
- **June**
 - 3.2.3 Data Quality Codes
 - 3.2.3.2 Missing Data - All hydrocarbons
 - 3.2.3.3 Missing Data - Specific hydrocarbons

3.3 HARWELL
- **April**
 - 3.3.1 Data Quality Codes
 - 3.3.1.2 Missing Data - All hydrocarbons
 - 3.3.1.3 Missing Data - Specific hydrocarbons
- **May**
 - 3.3.2 Data Quality Codes
 - 3.3.2.2 Missing Data - All hydrocarbons
 - 3.3.2.3 Missing Data - Specific hydrocarbons
3.3.3 June
3.3.3.1 Data Quality Codes
3.3.3.2 Missing Data - All hydrocarbons
3.3.3.3 Missing Data - Specific hydrocarbons

3.4 MARYLEBONE ROAD
3.4.1 April
3.4.1.1 Data Quality Codes
3.4.1.2 Missing Data - All hydrocarbons
3.4.1.3 Missing Data - Specific hydrocarbons
3.4.2 May
3.4.2.1 Data Quality Codes
3.4.2.2 Missing Data - All hydrocarbons
3.4.2.3 Missing Data - Specific hydrocarbons
3.4.3 June
3.4.3.1 Data Quality Codes
3.4.3.2 Missing Data - All hydrocarbons
3.4.3.3 Missing Data - Specific hydrocarbons

4 Discussion

4.1 THE RATIFIED DATA
4.1.1 Cardiff
4.1.2 Glasgow
4.1.3 Harwell
4.1.4 Marylebone Road

4.2 1,3-BUTADIENE DATA FOR THE VOC71M

4.3 CONCENTRATION TRENDS

4.4 COMPARISON WITH AIR QUALITY OBJECTIVES

APPENDIX 1 - Summary Statistical Information
APPENDIX 2 - Time Series Plots of Hydrocarbon Concentrations
1 Introduction

This report contains information on the quality and statistical parameters associated with ratified data from the UK Ambient Automatic Hydrocarbon Air Quality Network (The UK Hydrocarbon Network). The presented information and data cover the period 1 April 2004 to 30 June 2004. The ratified data have been made available on the World Wide Web at http://www.airquality.co.uk/archive/data_and_statistics_home.php

This report contains:

- The definition of a Data Quality Code for each reported hydrocarbon.
- The Data Quality Codes assigned to the data presented on the web.
- A list of periods of data loss, reasons for data loss and descriptions of the most significant causes of data loss.
- Statistical information for each measured hydrocarbon for each individual month.

In this report the unit used for expressing concentrations of gases is micrograms per cubic metre (\(\mu g/m^3\)), where some earlier reports have used parts per billion (ppb). This allows comparison to the relevant Air Quality Standards that are now expressed in micrograms per cubic metre (\(\mu g/m^3\)).
2 Hydrocarbon Data Quality

All hydrocarbon data are assigned a quality value. In general ratified hourly data have an uncertainty (at 95% confidence) of ±10% for values above 0.5 µg/m³ and ±0.05 µg/m³ for values below 0.5 µg/m³. These data are termed 'good quality'.

In some cases, because of instrument problems, data cannot be described as 'good' quality, but the data may still be of use to modellers and is therefore included in the archive. This is termed 'acceptable' quality data, and has an uncertainty (at 95% confidence) of ± 25% above 0.5 µg/m³ and ± 0.1 µg/m³ below 0.5 µg/m³.

Data that do not meet either the 'good' or 'acceptable' criteria do not appear in the archive.

Each month's data are assigned a Data Quality Code for each species as follows:

A. all 'good' quality data
B. most (> 75%) data points 'good', remainder 'acceptable' quality
C. roughly equal numbers of 'good' and 'acceptable' quality data
D. some (< 25%) data points 'good' quality; remainder 'acceptable' quality
E. all points 'acceptable' quality
3 Monthly Data Reports

The following sections give details of issues affecting data on a month by month basis. Data quality codes have been assigned for each monthly set of data.

3.1 CARDIFF

3.1.1 April

3.1.1.1 Data Quality Codes
Data quality code A for all data for all of the month except:
Data quality code E for 1,3-butadiene for all of the month.

3.1.1.2 Missing Data – All hydrocarbons
• Calibration 15/04/04 hours 13 to 14.
• Calibration 29/04/04 hours 14 to 15.

3.1.1.3 Missing Data – Specific hydrocarbons
None, except where the integration was unreliable due to very low concentrations.

3.1.2 May

3.1.2.1 Data Quality Codes
Data quality code A for all data for all of the month except:
Data quality code E for 1,3-butadiene for all of the month.

3.1.2.2 Missing Data – All hydrocarbons
• Calibration 13/05/04 hours 15 to 16.
• PC/GC communication problem 20/05/04 hours 03 to 05.
• Calibration 27/05/04 hours 12 to 13.

3.1.2.3 Missing Data – Specific hydrocarbons
None, except where the integration was unreliable due to very low concentrations.

3.1.3 June

3.1.3.1 Data Quality Codes
Data quality code A for all data for all of the month except:
Data quality code E for 1,3-butadiene for all of the month.

3.1.3.2 Missing Data – All hydrocarbons
• Calibration 12/06/04 hours 12 to 13.
• Calibration 23/06/04 hours 12 to 13.
• Calibration 24/06/04 hours 10 to 12.
• Sample pump failure 30/06/04 hours 17 to 24

3.1.3.3 Missing Data – Specific hydrocarbons
None, except where the integration was unreliable due to very low concentrations.
3.2 GLASGOW

3.2.1 April

3.2.1.1 Data Quality Codes

Data quality code A for all data for all of the month.

3.2.1.2 Missing Data - All hydrocarbons

- Calibration 14/04/04 hours 09 to 14.
- PC/GC communication problem 20/04/04 hour 15 to 21/04/04 hour 13

3.2.1.3 Missing Data - Specific hydrocarbons

1,3-butadiene for all of the month. No other hydrocarbons except where the integration was unreliable due to very low concentrations.

3.2.2 May

3.2.2.1 Data Quality Codes

Data quality code A for all data for all of the month.

3.2.2.2 Missing Data - All hydrocarbons

- Calibration 04/05/04 hours 11 to 15.

3.2.2.3 Missing Data - Specific hydrocarbons

1,3-butadiene for all of the month. No other hydrocarbons except where the integration was unreliable due to very low concentrations.

3.2.3 June

3.2.3.1 Data Quality Codes

Data quality code A for all data for all of the month.

3.2.3.2 Missing Data - All hydrocarbons

- Calibration 01/06/04 hours 11 to 15.
- Calibration 15/06/04 hours 09 to 14.
- Calibration 29/06/04 hours 11 to 15.

3.2.3.3 Missing Data - Specific hydrocarbons

1,3-butadiene for all of the month. No other hydrocarbons except where the integration was unreliable due to very low concentrations.
3.3 HARWELL

3.3.1 April

3.3.1.1 Data Quality Codes

Data quality code A for all data for all of the month except:
Data quality code E for 1,3-butadiene for all of the month.

3.3.1.2 Missing Data - All hydrocarbons

- Calibration 07/04/04 hours 09 to 11.
- Calibration 22/04/04 hours 09 to 11.

3.3.1.3 Missing Data - Specific hydrocarbons

None, except where the integration was unreliable due to very low concentrations.

3.3.2 May

3.3.2.1 Data Quality Codes

Data quality code A for all data for all of the month except:
Data quality code E for 1,3-butadiene for all of the month.

3.3.2.2 Missing Data - All hydrocarbons

- Calibration 06/05/04 hours 09 to 11.
- Calibration 25/05/04 hours 15 to 17.
- PID lamp deterioration 29/05/04 hour 08 to 31/05/04 hour 24.

3.3.2.3 Missing Data - Specific hydrocarbons

None, except where the integration was unreliable due to very low concentrations.

3.3.3 June

3.3.3.1 Data Quality Codes

Data quality code A for all data for all of the month except:
Data quality code E for 1,3-butadiene for all of the month.

3.3.3.2 Missing Data - All hydrocarbons

- PID lamp deterioration in previous quarter. New PID Lamp installed 22/06/04 hour 17.
- Calibration 24/06/04 hours 08 to 10.

3.3.3.3 Missing Data - Specific hydrocarbons

None, except where the integration was unreliable due to very low concentrations.
3.4 MARYLEBONE ROAD

3.4.1 April

3.4.1.1 Data Quality Codes
Data quality code A for all data for all of the month.

3.4.1.2 Missing Data - All hydrocarbons
- Calibration 08/04/04 hour 05 to 08.
- Calibration 28/04/04 hour 22 to 29/04/04 hour 01.

3.4.1.3 Missing Data - Specific hydrocarbons
None.

3.4.2 May

3.4.2.1 Data Quality Codes
Data quality code A for all data for all of the month.

3.4.2.2 Missing Data - All hydrocarbons
- Calibration 05/05/04 hours 13 to 16.
- Calibration 20/05/04 hours 04 to 07.
- Calibration 26/05/04 hours 12 to 15.

3.4.2.3 Missing Data - Specific hydrocarbons
None.

3.4.3 June

3.4.3.1 Data Quality Codes
Data quality code A for all data for all of the month.

3.4.3.2 Missing Data - All hydrocarbons
- Calibration 10/06/04 hours 03 to 06.
- Calibration 16/06/04 hours 14 to 17.
- Power supply failure 25/06/04 hour 01 to 28/06/04 hour 11.
- Calibration 28/06/04 hours 13 to 16.
- Power supply failure 30/06/04 hours 15 to 24.

3.4.3.3 Missing Data - Specific hydrocarbons
None.
4 Discussion

4.1 THE RATIFIED DATA

Tables 1 to 4, Appendix 1 contain statistical information relating to the ratified data, for each measured hydrocarbon, over the period 1 April 2004 to 30 June 2004. The tables list the percentage data capture, maximum concentration, mean concentration and minimum concentration of each hydrocarbon. The data capture is the number of ratified hourly data values expressed as a percentage of the number of hours in the specified period.

4.1.1 Cardiff

For the Cardiff site the data capture for benzene was 88.32% and for 1,3-butadiene was 89.15%.

During this quarter it was noticed that the peaks were poorly integrated in a number of chromatograms. This problem was more noticeable with low concentrations due to seasonal variation.

There have been no other significant problems for the period covered by this report.

4.1.2 Glasgow

For the Glasgow site the data capture for benzene was 82.74% and for 1,3-butadiene was 0%.

In the previous quarter a problem occurred with the power supply of the analyser. It was not possible to repair this at the site or at the CMCU, so the analyser was returned to the manufacturer. This resulted in no data from the beginning of the quarter. A temporary analyser was installed on the 13th April 2004 to prevent further loss of data. The analyser was configured to measure BTX compounds only and not 1,3-butadiene. This resulted in no data for 1,3-butadiene for the quarter.

There have been no other significant problems for the period covered by this report.

It should be noted that the hydrocarbon instrumentation at the Glasgow site samples air through a separate inlet from that used for the inorganic measurements. The inlet for the inorganic measurements is within one metre from the kerb and hence these are classed as kerbside measurements. The sample inlet for the hydrocarbon measurements is more than one metre from the kerb (but less than five metres) and hence these are classed as roadside measurements.

4.1.3 Harwell

For the Harwell site the data capture for benzene was 66.62% and for 1,3-butadiene was 66.67%.

During June it was noticed that the peak areas were close to the limit of detection, indicating that the PID lamp was approaching the end of its useful life. This problem was more noticeable with the lower concentrations due to seasonal variation. The PID lamp was changed on the 23rd June.

There have been no other significant problems for the period covered by this report.

4.1.4 Marylebone Road

For the Marylebone Road site the data capture for benzene was 85.49% and for 1,3-butadiene was 94.09%.

During this quarter it was noticed that the benzene peak was poorly integrated in a number of chromatograms. This problem was more noticeable with low concentrations due to seasonal variation.

There have been no other significant problems for the period covered by this report.
4.2 1,3-BUTADIENE DATA FOR THE VOC71M

During the process of calculating response factors for the data covered in this report it was observed that the 1,3-butadiene peak had merged with a neighbouring peak, trans-2-butene, in the chromatograms of the calibration samples. The reported peak areas for 1,3-butadiene in the standards were therefore, overestimated. As a result an accurate response factor for 1,3-butadiene could not be generated, as the degree of overestimation could not be accurately quantified.

An alternative approach was used to generate the response factor for 1,3-butadiene. The response factor for cis-2-butene, a well-resolved peak, was used to derive a response factor for 1,3-butadiene. The relative response factors for 1,3-butadiene and cis-2-butene are fairly constant over time when both peaks are well resolved. The cis-2-butene response factor and relative response factor were used to derive a response factor for 1,3-butadiene.

It is likely that this approach generates a relatively accurate response factor for 1,3-butadiene. However due to the increased uncertainty associated with this method, all the 1,3-butadiene data at Cardiff, Glasgow and Harwell has been assigned data quality code E.

4.3 CONCENTRATION TRENDS

The periods when data for benzene and 1,3-butadiene were available, for all the sites, are plotted graphically in Figures 1 to 8, Appendix 2. The measured concentrations of 1,3-butadiene fell below 0.02 µg/m³ on a number of occasions see Figures 2 and 6, Appendix 2. Where concentrations fell below 0.02 µg/m³ the ratified concentrations have been reported as 0.00 µg/m³.

At Cardiff and Harwell the measured concentrations of hydrocarbons were low for most of the period covered by this report. At these urban background and rural sites there tends to be a pattern of seasonal variation with higher levels during the winter when dispersion is generally poorer and photochemical removal is at a minimum.

The Glasgow and Marylebone Road data tend to exhibit higher levels with less seasonal variation than is apparent in data from the other two sites. The measured concentrations and trends are typical of sites close to busy roads where the source of the measured hydrocarbons is close to the monitoring location. The emitted hydrocarbons will have had little time to mix and react in the atmosphere. The measured concentrations at Glasgow and Marylebone Road for April to June 2004 exhibited no significant episodes of elevated concentrations. There is insufficient information to provide an explanation of the observed difference in the trends from site to site, although spatial variations in meteorological conditions may well be the cause. The variation in trends from site to site is probably due to variations in atmospheric dispersion.
4.4 COMPARISON WITH AIR QUALITY OBJECTIVES

The Air Quality Strategy for the UK has set Air Quality Objectives for benzene and 1,3-butadiene. The Air Quality Objective for benzene in the UK is 16.25 µg/m³ expressed as a running annual mean to be met by 31 December 2003. In England and Wales there is an additional objective for benzene of 5 µg/m³ expressed as an annual mean to be met by end of 2010. In Scotland an additional objective has been set for benzene of 3.25 µg/m³ to be met by the end of 2010. The Air Quality Objective for 1,3-butadiene is specified as a running annual mean of 2.25 µg/m³ to be met by the end of 2003.

The annual means for benzene and 1,3-butadiene for 2000, 2001, 2002 and 2003 together with the quarterly means for the first and second quarters of 2004 are given in Tables 1 and 2 below. For benzene the annual means for 2000, 2001, 2002 and 2003 were well below the respective Air Quality Objective of 16.25 µg/m³ to be met by the end of 2003. The annual means for 2003 were also below the Air Quality Objective to be met by 2010 for the respective regions.

For 1,3 butadiene the annual means for 2000, 2001, 2002 and 2003 were well below the respective Air Quality Objective of 2.25 µg/m³ to be met by the end of 2003.

The means for both benzene and 1,3-butadiene for quarter 2, 2004 were lower than the annual means for 2003 and the means for quarter 1, 2004. This is an indication of seasonal variations in HC compounds in the UK.

Table 1. Means of measured benzene concentrations (µg/m³) at each of the UK Automatic Hydrocarbon Sites.

<table>
<thead>
<tr>
<th>Monitoring Site</th>
<th>2000 Annual Mean</th>
<th>2001 Annual Mean</th>
<th>2002 Annual Mean</th>
<th>2003 Annual Mean</th>
<th>Quarter 1 2004 Mean</th>
<th>Quarter 2 2004 Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiff Centre</td>
<td>$§</td>
<td>$§</td>
<td>1.22§</td>
<td>1.17</td>
<td>1.17</td>
<td>0.68</td>
</tr>
<tr>
<td>Glasgow</td>
<td>§§§</td>
<td>$$$</td>
<td>2.33 $</td>
<td>1.82</td>
<td>1.65</td>
<td>1.17</td>
</tr>
<tr>
<td>Harwell</td>
<td>0.53</td>
<td>0.62</td>
<td>0.60</td>
<td>0.59</td>
<td>0.52</td>
<td>0.29</td>
</tr>
<tr>
<td>Marylebone Road</td>
<td>6.29</td>
<td>4.55</td>
<td>3.91</td>
<td>3.32</td>
<td>2.92</td>
<td>2.33</td>
</tr>
</tbody>
</table>

$ Annual means calculated from significantly less than 12 months data
$$ The Cardiff Centre site was installed on 5th September 2002.
$$ The Glasgow site was installed on 1st August 2002.

Table 2. Means of measured 1,3-butadiene concentrations (µg/m³) at each of the UK Automatic Hydrocarbon Sites.

<table>
<thead>
<tr>
<th>Monitoring Site</th>
<th>2000 Annual Mean</th>
<th>2001 Annual Mean</th>
<th>2002 Annual Mean</th>
<th>2003 Annual Mean</th>
<th>Quarter 1 2004 Mean</th>
<th>Quarter 2 2004 Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiff Centre</td>
<td>$§</td>
<td>$§</td>
<td>0.15§</td>
<td>0.15</td>
<td>0.13</td>
<td>0.04</td>
</tr>
<tr>
<td>Glasgow</td>
<td>$$$</td>
<td>$$$</td>
<td>0.36§</td>
<td>0.42</td>
<td>0.31</td>
<td>$$§§§</td>
</tr>
<tr>
<td>Harwell</td>
<td>0.09</td>
<td>0.11</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Marylebone Road</td>
<td>1.63</td>
<td>1.12</td>
<td>0.95</td>
<td>0.64</td>
<td>0.56</td>
<td>0.47</td>
</tr>
</tbody>
</table>

$ Annual means calculated from significantly less than 12 months data
$$ The Cardiff Centre site was installed on 5th September 2002.
$$ The Glasgow site was installed on 1st August 2002.
$$§§ No 13-butadiene measured for the quarter.
Appendices

CONTENTS

Appendix 1 Summary Statistical Information
Appendix 2 Time Series Plots of Hydrocarbon Concentrations
Appendix 1
Summary Statistical Information

CONTENTS

Table 1. Percentage data capture, maximum, mean and minimum values of ratified data from the Cardiff site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Table 2. Percentage data capture, maximum, mean and minimum values of ratified data from the Glasgow site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Table 3. Percentage data capture, maximum, mean and minimum values of ratified data from the Harwell site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Table 4. Percentage data capture, maximum, mean and minimum values of ratified data from the Marylebone Road site affiliated to the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004
Table 1. Percentage data capture, maximum, mean and minimum values of the ratified data from the Cardiff site of the UK Hydrocarbon Network, for the period 1 April 2004 to 30 June 2004

<table>
<thead>
<tr>
<th>Compound</th>
<th>%Data capture</th>
<th>Maximum hourly concentration (µg/m³)</th>
<th>Mean concentration (µg/m³)</th>
<th>Minimum hourly concentration (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-Butadiene</td>
<td>89.15</td>
<td>2.67</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>Benzene</td>
<td>88.32</td>
<td>5.55</td>
<td>0.68</td>
<td>0.00</td>
</tr>
<tr>
<td>Toluene</td>
<td>98.81</td>
<td>69.23</td>
<td>3.21</td>
<td>0.42</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>48.90</td>
<td>3.44</td>
<td>0.40</td>
<td>0.04</td>
</tr>
<tr>
<td>(m+p)-Xylene *</td>
<td>91.71</td>
<td>11.90</td>
<td>1.10</td>
<td>0.09</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>60.44</td>
<td>49.45</td>
<td>1.06</td>
<td>0.04</td>
</tr>
</tbody>
</table>

* (m+p)-Xylene data are reported as the sum of the 2 individual components due to the fact that they are not sufficiently well resolved in the chromatogram.
Table 2. Percentage data capture maximum, mean and minimum values of ratified data from the Glasgow site of the UK Hydrocarbon Network, for the period 1 April 2004 to 30 June 2004

<table>
<thead>
<tr>
<th>Compound</th>
<th>%data capture</th>
<th>Maximum hourly concentration (µg/m³)</th>
<th>Mean concentration (µg/m³)</th>
<th>Minimum hourly concentration (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-Butadiene</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>Benzene</td>
<td>82.74</td>
<td>6.36</td>
<td>1.17</td>
<td>0.00</td>
</tr>
<tr>
<td>Toluene</td>
<td>83.75</td>
<td>38.79</td>
<td>3.79</td>
<td>0.31</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>67.63</td>
<td>69.28</td>
<td>0.84</td>
<td>0.22</td>
</tr>
<tr>
<td>(m+p)-Xylene *</td>
<td>83.42</td>
<td>25.91</td>
<td>2.56</td>
<td>0.22</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>76.05</td>
<td>62.93</td>
<td>1.10</td>
<td>0.22</td>
</tr>
</tbody>
</table>

* (m+p)-Xylene data are reported as the sum of the 2 individual components due to the fact that they are not sufficiently well resolved in the chromatogram.

$ No 13-butadiene measured for this quarter.
Table 3. Percentage data capture, maximum, mean and minimum values of ratified data from the Harwell site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

<table>
<thead>
<tr>
<th>Compound</th>
<th>%data capture</th>
<th>Maximum hourly concentration (µg/m³)</th>
<th>Mean concentration (µg/m³)</th>
<th>Minimum hourly concentration (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-Butadiene</td>
<td>66.67</td>
<td>0.58</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Benzene</td>
<td>66.62</td>
<td>2.08</td>
<td>0.29</td>
<td>0.00</td>
</tr>
<tr>
<td>Toluene</td>
<td>64.42</td>
<td>9.10</td>
<td>0.69</td>
<td>0.00</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>26.74</td>
<td>1.50</td>
<td>0.18</td>
<td>0.00</td>
</tr>
<tr>
<td>(m+p)-Xylene *</td>
<td>55.08</td>
<td>5.51</td>
<td>0.40</td>
<td>0.00</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>21.06</td>
<td>1.85</td>
<td>0.18</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* (m+p)-Xylene data are reported as the sum of the 2 individual components due to the fact that they are not sufficiently well resolved in the chromatogram.
Table 4. Percentage data capture, maximum, mean and minimum values of ratified data from the Marylebone Road site affiliated to the UK Hydrocarbon Network for the period; 1 April 2004 to 30 June 2004

<table>
<thead>
<tr>
<th>Compound</th>
<th>% data capture</th>
<th>Maximum hourly concentration (µg/m³)</th>
<th>Mean concentration (µg/m³)</th>
<th>Minimum hourly concentration (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethane</td>
<td>94.09</td>
<td>75.15</td>
<td>9.17</td>
<td>1.60</td>
</tr>
<tr>
<td>Ethene</td>
<td>94.09</td>
<td>20.01</td>
<td>4.37</td>
<td>0.28</td>
</tr>
<tr>
<td>Propane</td>
<td>94.09</td>
<td>66.68</td>
<td>5.09</td>
<td>0.93</td>
</tr>
<tr>
<td>Propene</td>
<td>94.05</td>
<td>12.59</td>
<td>2.17</td>
<td>0.05</td>
</tr>
<tr>
<td>Ethyne</td>
<td>94.09</td>
<td>22.07</td>
<td>3.59</td>
<td>0.31</td>
</tr>
<tr>
<td>2-Methylpropane</td>
<td>94.09</td>
<td>20.88</td>
<td>3.79</td>
<td>0.48</td>
</tr>
<tr>
<td>n-Butane</td>
<td>94.09</td>
<td>53.58</td>
<td>7.38</td>
<td>0.75</td>
</tr>
<tr>
<td>trans-2-Butene</td>
<td>94.05</td>
<td>2.28</td>
<td>0.56</td>
<td>0.16</td>
</tr>
<tr>
<td>1-Butene</td>
<td>94.00</td>
<td>2.26</td>
<td>0.51</td>
<td>0.05</td>
</tr>
<tr>
<td>cis-2-Butene</td>
<td>94.05</td>
<td>1.98</td>
<td>0.42</td>
<td>0.05</td>
</tr>
<tr>
<td>2-Methylbutane</td>
<td>94.09</td>
<td>67.98</td>
<td>8.95</td>
<td>0.63</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>94.09</td>
<td>17.33</td>
<td>2.72</td>
<td>0.36</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>94.09</td>
<td>1.64</td>
<td>0.47</td>
<td>0.04</td>
</tr>
<tr>
<td>trans-2-Pentene</td>
<td>93.82</td>
<td>4.25</td>
<td>0.58</td>
<td>0.03</td>
</tr>
<tr>
<td>cis-2-Pentene</td>
<td>91.58</td>
<td>2.15</td>
<td>0.35</td>
<td>0.03</td>
</tr>
<tr>
<td>2-Methylpentane</td>
<td>93.82</td>
<td>16.84</td>
<td>2.82</td>
<td>0.21</td>
</tr>
<tr>
<td>3-Methylpentane</td>
<td>93.77</td>
<td>10.15</td>
<td>1.72</td>
<td>0.14</td>
</tr>
<tr>
<td>Isoprene</td>
<td>92.67</td>
<td>1.55</td>
<td>0.31</td>
<td>0.03</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>93.86</td>
<td>6.44</td>
<td>1.14</td>
<td>0.04</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>93.68</td>
<td>3.58</td>
<td>0.58</td>
<td>0.00</td>
</tr>
<tr>
<td>Benzene</td>
<td>85.49</td>
<td>12.00</td>
<td>2.33</td>
<td>0.06</td>
</tr>
<tr>
<td>Toluene</td>
<td>93.82</td>
<td>50.87</td>
<td>9.56</td>
<td>0.65</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>92.03</td>
<td>763.32</td>
<td>2.86</td>
<td>0.04</td>
</tr>
<tr>
<td>(m+p)-Xylene *</td>
<td>65.98</td>
<td>1524.88</td>
<td>11.86</td>
<td>0.26</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>92.81</td>
<td>634.19</td>
<td>2.60</td>
<td>0.09</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>93.45</td>
<td>45.60</td>
<td>1.05</td>
<td>0.05</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>93.96</td>
<td>627.65</td>
<td>3.44</td>
<td>0.05</td>
</tr>
</tbody>
</table>

* (m+p)-Xylene are reported as the sum of the 2 individual components due to the fact that they are not sufficiently well resolved in the chromatogram.
Appendix 2
Time Series Plots of Hydrocarbon Concentrations

CONTENTS

Figure 1. Time series plot of the ratified benzene data from the Cardiff site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Figure 2. Time series plot of the ratified 1,3-butadiene data from the Cardiff site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Figure 3. Time series plot of the ratified benzene data from the Glasgow site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Figure 4. Time series plot of the ratified 1,3-butadiene data from the Glasgow site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Figure 5. Time series plot of the ratified benzene data from the Harwell site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Figure 6. Time series plot of the ratified 1,3-butadiene data from the Harwell site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Figure 7. Time series plot of the ratified benzene data from the Marylebone Road site affiliated to the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Figure 8. Time series plot of the ratified 1,3-butadiene data from the Marylebone Road site affiliated to the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004
Figure 1. Time series plot of the ratified benzene data from the Cardiff site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Figure 2. Time series plot of the ratified 1,3-butadiene data from the Cardiff site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004
Figure 3. Time series plots for the ratified benzene data from the Glasgow site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Figure 4. Time series plots for the ratified 1,3-butadiene data from the Glasgow site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004
Figure 5. Time series plots for the ratified benzene data from the Harwell site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004

Figure 6. Time series plots for the ratified 1,3-butadiene data from the Harwell site of the UK Hydrocarbon Network, for the period; 1 April 2004 to 30 June 2004
Figure 7. Time series plots for the ratified benzene data from the Marylebone Road site affiliated to the UK Hydrocarbon Network, for the period 1 April 2004 to 30 June 2004.

Figure 8. Time series plots for the ratified 1,3-butadiene data from the Marylebone Road site affiliated to the UK Hydrocarbon Network, for the period 1 April 2004 to 30 June 2004.