

Invest to Save Budget

The ISB-52 Project - improving air quality forecasting

15 April 2003

NETCEN

The Project Team

- QinetiQ: D Willetts, G Pearson & R Young
- Met Office: *D Middleton*
- Salford University: C Collier, F Davies & K Bozier
- Essex University: A Holt, G Upton & S Siemen
- Client: J Dixon

Project Objective

- To achieve the ability to improve the accuracy of dispersion model forecasts
- by improved understanding of the flow dynamics in the urban environment
- rather than by incorporating lidar data directly into the model.

Doppler Lidar Details

- 10 µm wavelength
- TEA laser
- Pulsed system
- 10 km range
- Complimentary to radar
- Gives Line of Sight measurements
- Dual lidar combines measurements to determine unambiguous vector components

Doppler Lidar

System Status

- Optical system now complete and tested
 - Delays in construction due to late delivery of TEA laser and faulty laser tube
- Data acquisition system configured for either real-time or raw mode
- Scanner control complete

Identification of key dispersion model parameters and how to measure them with lidars.

- A lidar cannot monitor the complete wind field instantaneously
- Need to decide what features to observe
- Need to deduce the scale lengths of these features so the lidar sampling will be appropriate for monitoring pollution dispersal mechanisms

- All current forecasting models for the urban environment were designed for the rural and then extended to cover the urban.
- All models extended to the urban environment contain *assumptions* that could be improved upon via the use of in-situ observations.

Potential ways in which to improve the forecasting models

- The highest priority parameters to observe are the **turbulence** and **the structure of the Planetary Boundary Layer**.
- In particular it will be important to observe the diurnal changes in turbulence and mixing layer structure and depth for the rural and urban environments simultaneously.
- Monitor the same volume of space for long times, at least 600 s at frequencies in the order of Hz if possible.
- This implies a scan pattern which concentrates upon collecting temporal data at the expense of spatial.

How to quantify the improvements in forecasting accuracy

- Cannot be assessed until data has been gathered, analysed and incorporated into the forecasting models.
 - Compare forecasts from models using assumptions to models that have been modified in light of ISB-52 findings
- Difficult to believe that replacement of assumptions will not improve forecasting accuracy

How to make the measurements: VAD

- Gives prevalent wind direct
- Useful to align beams to minimise cross talk
- and optimise observation of turbulence, at least for one lidar.

To gather unambiguous horizontal flow data at a column

- Small number of elevations chosen
- preference is for most of the measurements to be made at lower altitudes

To obtain unambiguous vertical flow data in the plane of the lidars.

 Also gives unambiguous horizontal wind flow in the plane between the two lidars

What the observations give us

- Unambiguous horizontal wind flow data at columns
- Unambiguous vertical wind flow data in the plane of the lidars
- ambiguous wind flow along line of sight
- PBL structural information
- BUT observations could be uncorrelated because of length of time to make these measurements

Key parameters to visualise

- Mean wind flow in terms of direction and strength
- Turbulence
- PBL
- To be presented in the following formats
 - Visualising rays of lidar data and wind vectors in 3D
 - Production of a 2D snap shot of a 3D display
 - Animations

Requirements for the trial site

- Borders a *representative* urban rural boundary
- Base line of 1800 to 3000 m
- Excellent fields of view
- Vehicle security
- Ideally only one site

Malvern Local trial

Preliminary results

Structure in backscatter profiles

- Curve fit signal power versus range
- Subtract function to leave fluctuations
- Applied to18th file of March data set
- Correlation of velocity structure with backscatter
- Pollution entrainment, boundary layer height

Preliminary comparison to NAME model observations

Summary

- Project 19 months old
- Lidar performance has been enhanced to meet ISB-52 specifications
- Strategy for making observations devised
- Winter trial has taken place
- First dual Doppler lidar data is currently being analysed

