

Pollen allergy - the triggers

Dr Matt Smith National Pollen and Aerobiology Research Unit

Analysis techniques

Light microscopy

Agar plates - cultivable fraction of fungal spores

DNA analysis

Immunoanalysis Enzyme linked Immuno Sorbent Assay (ELISA)

Volumetric spore trap (Hirst, 1952)

- Exposed rooftops
- Samples examined using light microscopy (pollen count)
- Continuous sampling
- Daily average pollen count (24 hrs)
- Time related samples (e.g. 2 hr values)
- Pollen grains of each type per cubic metre of air sampled (grains/m³)

- Pollen grains from anemophilous (wind pollinated) plants
- Characterised by
 - Produced in huge numbers
 - Small (~20-40 µm),
 - Thin exine and smooth sculpture
 - However, many have larger grains and/or a more complex exine structure and features such as air sacs.

Seasonal variations - timing

Taxa	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Hazel (Corylus)	-		-	-					
Yew (Taxus)	_	-	-		4				
Alder (Alnus)				-				-	
Elm (Ulmus)		-		-		1			
Willow (Salix)		-		-					
Poplar (Populus)			_	-	1				
Birch (Betula)				-	-	_			
Ash (Fraxinus)			-	-					
Plane (Platanus)			-						
Oak (Quercus)					-	-			
Oil seed rape (B. napus)				-		-	-		
Pine (Pinus)				_			_		
Grass (Gramineae)					-	-	-		
Plantain (Plantago)							-		
Lime (Tilia)						-	-		
Nettle (Urtico)			-		_		-	-	
Dock (Rumex)					-		-	-	
Mugwort (Artemisia)							-	-	

http://www.worcester.ac.uk/businessandresearch/specialist/14511.html

Weather factors: Trees

- In UK *Betula* flowers in April/May before leaves have expanded
- Production: Catkins start to develop during previous year
- Biennial rhythms
- **Timing** greatly dependent on temperature:
 - Vernalisation
 - Winter dormancy
 - Heat accumulation

Weather factors: Grasses

Lolium perenne (perennial ryegrass)

- Production: Weather conditions immediately before the pollen season
- Start date: differs by ~ 30 days
 - Warm springs gentle start
 - Colder springs sudden rise
- But must consider photoperiod response

Variation in timing and intensity

Regional variations

- Central regions higher counts than coastal
- Depends on species distribution (biogeographical regions)
- Later start and shorter seasons in north due to latitude and climate
- Urban areas lower counts than rural. Fewer and more remote sources
- Tree planting: e.g. *Platanus* (plane) trees in London

European Aeroallergen Network

Ambrosia 1990

Ambrosia 1995

none

low

very low

"Pollen from different trees, from different regions, from different years, and from different days can vary substantially in Bet v 1 released from their pollen"

- Buters et al. (2008) Int Arch Allergy Immunol;145:122–130
- Buters et al. (2010) *Allergy* DOI: 10.1111/j.1398-9995.2009.02286.x.

HIALINE

- ChemVol High Volume Cascade
 Impactor
- 800 l/min
- Different factions (PM10 & PM 2.5)
- Enzyme linked Immuno Sorbent Assay (ELISA) analysis for the major allergens from:
- birch (Bet v1), grass (Phl p 5), olive (Ole e 1)

The affect of climate change

- Increased temperatures on:
 - plant phenology
 - plant distribution
- Changes in precipitation
- Increased concentrations of CO₂ and the affect on plant productivity

The affect of increased atmospheric CO₂ Plant physiology

- Ambrosia spp.
- Pollen production effectively doubled from pre-industrial to present day levels of CO₂
- A further doubling occurred when CO₂ concentrations rose to a projected 600 ppmv.

Ziska, L. H. and Caulfield, F. A. (2000) *Australian Journal of Plant Physiology* 27(10): 893-898.

Direct affects of atmospheric pollution

- Pollen counts ~ 50% lower in cities than in rural areas but prevalence rates of seasonal allergic rhinitis generally as high or higher
- Pollutants may affect allergenicity of pollen directly via:
 - Contamination of the anthers
 - During flight of pollen through the air when dispersed

Emberlin, J (1998) Eur Resp Rev 8(53): 164-167

Indirect affects of atmospheric pollution

Photo of tobacco plant leaf damage due to ozone pollution showing symptomatic white spots

http://badc.nerc.ac.uk/community/post er_heaven_old/harrisond/slide3.html

- Pollution stress on plant growth
- Reduced net productivity leads to the production of fewer, smaller pollen grains and an increased number of deformed grains;
- However, evidence of increased allergenicity in pollen from plants grown in more polluted areas.

Synergistic effects between aeroallergens and pollutants

- e.g. NO₂ and O₃ produced by vehicles can add the chemical group nitrate to protein molecules, particularly birch pollen proteins including the allergen Bet v 1
- Contact with nitrated proteins or nitrating substances from the environment might trigger immune reactions
- Nitration could boost the power of existing allergens, or even make benign proteins allergenic

Franze et al. (2005) Environmental Science & Technology, 39, 1673-1678

Conclusion

- Pollen from wind pollinated plants most important in terms of allergy
- Meteorological data used to predict temporal variations in pollen counts
- New techniques in aerobiology include the analysis of airborne allergen concentrations
- Climate change can affect the timing and intensity of pollen seasons as well as the distribution of allergenic plants.
- Chemical air pollutants can affect the allergenicity of pollen

Pollen allergy - the triggers

Dr Matt Smith National Pollen and Aerobiology Research Unit