Cambridge Environmental Research Consultants Ltd

Validation and Sensitivity Study of ADMS-Urban For London

TOPIC REPORT

Prepared for DEFRA, National Assembly for Wales, The Scottish Executive, and the Department of the Environment, Northern Ireland

22nd January 2003

Report Information

CERC J	ob Number:	FM489			
Job Title	:	Validation and Sensitivity Study of ADMS Urban for London			
Prepare	d for:	DEFRA, National Assembly for Wales, Th Scottish Executive, and the Department of the Environment, Northern Ireland			
Report S	Status:	Draft			
Report F	Reference:	FM489/R5/03			
Issue Da	ate:	22nd January 2003			
Author(s	;):	David Carruthers, Jo Blair, Kate Johnson			
Reviewe	er(s):				
Issue	Date	Comments			
1	29/03/02	First Draft			
2	20/05/02	Second Draft			
3	02/08/02	Third Draft			
		Fourth Draft			
4	22/01/03	Final Draft			
4 5	22/01/03				
		Validation&Sensitivity(22Jan03)10_TR- 0191.doc			

EXECUTIVE SUMMARY

The high resolution air quality model, ADMS-Urban, has been set up for use with the latest London Emissions Inventory for 1999 emissions and validated against continuous hourly measurements of NO_x , NO_2 , O_3 and PM_{10} from AURN sites across London. In addition the sensitivity of predicted concentrations to model input data and set-up parameters has been investigated in detail.

The comparison has confirmed the generally good performance of the model with the annual mean values of NO₂ (overall fractional bias 0.02) and PM₁₀ (overall fractional bias 0.048) being especially well predicted, although individual site locations are subject to greater errors (e.g. the overall normalised mean square error for NO₂ is 0.19). The high percentile (peak) values of NO_x and NO₂ show some tendency to overprediction.

The sensitivity study investigated the sensitivity to different model inputs: namely the height of grid sources, surface roughness length, minimum Monin Obukhov length used to limit stable stratification in an urban area, meteorological data sites and emissions. One of the greatest sensitivities was to the choice of meteorological site with, for instance, the overall mean of NO₂ reducing by 6% if London Weather Centre data was used rather than Heathrow. Adjusting the initial grid source height, minimum Monin Obukhov length or surface roughness within a realistic range had little impact on concentration so we can be sure that these parameters are set at reasonable values which apply equally well to future projections of concentrations. Thus the study suggests that, given accurate emission predictions, the model will calculate future concentration to reasonable accuracy.

The overall fractional biases of future projections of annual means NO_2 and PM_{10} , which are not very sensitive to the meteorological year, are likely to be no more than about 5%, although individual sites may show greater error. In terms of the percentage of road segments across London exceeding annual mean objectives for NO_2 and PM_{10} , the uncertainty corresponds to a relatively small range for NO_2 (81%:94% for 1999; 50%:73% for 2005 and 25%:44% for 2010), but can result in a larger range for PM_{10} depending on the year (eg, 46%:100% for 2005). High percentiles can be subject to greater error and uncertainty due to meteorological variability.

1. Introduction

This validation and sensitivity study is the first of a series of topic reports prepared as part CERC's contract to model air pollutants in urban areas in the UK. The initial part of the project has focussed on using the Air Dispersion Modelling System ADMS-Urban to model several important pollutants in Greater London: Nitrogen Dioxide (NO₂); Oxides of Nitrogen (NO_x); particles smaller than 10 microns diameter (PM₁₀); and Ozone (O₃). The other two topic reports record how ADMS-Urban was used to produce air quality maps for London (Blair et al., 2003) and a comparison with the results of ERG and NETCEN pollution prediction methodologies (Carruthers et al., 2003).

All of the pollutants are measured at various locations across London, with the number of automatic monitoring network (AURN) sites for which data are available having increased significantly over the last few years. These measurements give a good idea of the current state of air quality in London. However, concentrations are unknown at interim locations and it is not possible to directly project measured concentrations into the future to anticipate changes in air quality, which will accompany expected changes in pollutant emissions profiles.

For this reason air dispersion modelling is necessary to enable maps of air quality to be produced and to allow changes in air quality to be predicted for various scenarios. It is important that the model gives realistic results thus a validation study is necessary, in which air quality predictions are compared with measurements. If the model performs well, this is reasonable assurance that the predictions made for intermediate locations and future years will also be realistic.

Naturally, there are more uncertainties in predicting future concentrations than in current ones, for example, meteorology is known to affect the air quality causing changes for year to year giving significant "good-case" and "worst-case" conditions for particular pollutants. Assessment of how the air quality is likely to vary in response to these and other variables can be investigated using an appropriate sensitivity study.

This topic report records a validation study and sensitivity study for Greater London modelling using the Air Dispersion Modelling System ADMS-Urban (Carruthers et al., 1998). The year 1999 was used as a base year for the studies, because it is a typical year of meteorological data and measured data are available for up to 24 AURN sites. Their locations are illustrated in Figure 1.1. Data were measured on an hour-by-hour basis and the modelled concentrations of pollutants were predicted for these locations, also on an hour by hour basis, using what was considered to be a representative set of model parameters.

For ease of comparison, the results are presented in ppb for NO_x , NO_2 , and ozone, but in $\mu g/m^3$ for PM_{10} , in gravimetric equivalent output.

Sections 2 to 5 present a brief description of ADMS-Urban, a discussion of the emissions data, meteorological data and background calculations. Model validation and model sensitivities are presented in sections 6 and 7.

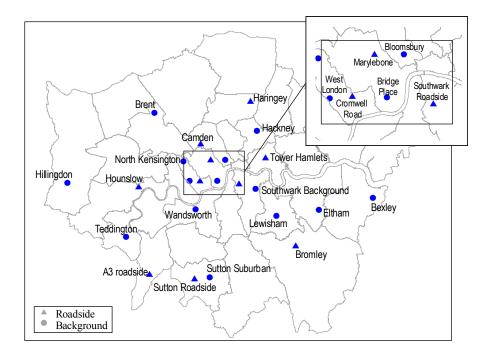


Figure 1.1 Automatic Monitoring Sites in Greater London

2. ADMS-Urban

The ADMS-Urban air quality model (Carruthers et al., 1998) is a transport and dispersion model based on ADMS 3, the advanced gaussian short range dispersion model for industrial sources (Carruthers et al., 1994). Full technical details on this model are described in the technical specification (CERC, 2000). ADMS has been developed by CERC in collaboration with the University of Surrey and the Met Office and has been extensively validated (e.g. Hanna et al., 1999). It is routinely used for regulatory purposes. ADMS-Urban was developed by CERC from ADMS 3 specifically for air quality calculations across urban areas and was motivated by the Air Quality Strategy. The model is able to calculate pollutant concentrations for the full range of averaging times required by the Air Quality Strategy and EU Directives (i.e. 15 minutes to 1 year).

Additional features of ADMS-Urban include:

- Modification of the line source algorithms so that they can be applied to dispersion from road sources specifically traffic produced turbulence and street canyons;
- Allowance for a large array of grid sources necessary for large urban areas;
- A trajectory model within which the ADMS algorithms are nested and which allows the temporal variation in meteorology and emissions to impact on the chemical reaction scheme.

The sources are treated as precisely as is possible and necessary. Thus road sources relatively close to the output domain (i.e. within 3km) are characterised by their location, width, street canyon height (where relevant) and traffic/emission characteristics, whilst road sources more distant are aggregated into grids without loss of accuracy. Large point sources are generally treated explicitly whilst smaller point sources and other emissions are all aggregated onto grids.

The model is run using successive hours of meteorological data, background pollution data and emissions data as input. Thus both long term averages, shorter averaging times (as little as one hour) and percentiles can be calculated. Meteorological data from London Heathrow, background data from surrounding rural sites and emissions data from the London Atmospheric Emissions Inventory (LAEI, December 2001) were used. Local explicit sources take account only of the most recent meteorology while other sources are affected by current meteorology and that prevailing over previous hours. Chemical reactions take account of the time history of a parcel of air/pollutant arriving at a particular receptor point and are characterised by the generic reaction set (Azzi et al., 1992; Ventrakan et al., 1994).

Pollution not arising from emissions included in the inventory is estimated from rural measurements (rural background). In addition, in the case of PM_{10} , the local coarse component deriving from construction dust, etc, is also added to the ADMS-Urban dispersion calculation. This procedure is also used in the NETCEN mapping.

ADMS-Urban has within it a number of adjustable global parameters. The most important of these are surface roughness (z_0), minimum Monin Obukhov length $L_{MO}(min)$ for limiting stable stratification in urban areas, and the depth of the grid

sources (h_g), i.e. the depth of which the gridded emissions are mixed. In setting the model up for a particular location these parameters may be adjusted within reasonable and justifiable ranges to obtain the best overall comparison with monitoring data. It is this 'best set' of parameters which is used to calculate the modelled concentrations in this report. For instance reasonable estimates of the parameters for London might vary within the following range:

- $0.8 < z_0 < 2.0m;$
- $30m < L_{MO}(min) < 100m;$
- $30m < h_g < 100m$.

ADMS-Urban has been subject to a large number of validation studies. These have included previous studies in London (Carruthers et al., 1999), validation against monitoring sites and studies in Budapest and North East China.

ADMS-Urban version 1.7 was used for this study.

3. Emissions Data

The Greater London Authority (GLA) released an early version of the London Atmospheric Emissions Inventory in October 2001. This was then replaced in December 2001 by an inventory which used a new set of traffic emission factors. The validation study uses the December inventory and the October inventory is used as one of the scenarios in the sensitivity analysis section of this study. Since then a further inventory was issued in February 2002 which used slightly modified traffic emission factors. Table 3.1 compares the total annual emissions of NO_x, PM₁₀ and VOC used in the modelling. It also gives the total annual emissions in the February 2002 inventory, this is just for comparison purposes, as the inventory has not been used in the modelling in this study.

Table 3.1 shows that the February 2002 inventory is only slightly different to the December 2001 inventory, therefore it is likely that the calculated concentrations using each of these inventories would be very similar. Figure 3.1 shows the total emissions of NO_x and PM_{10} for 1999 as 1×1 km gridded emissions, using the December 2001 inventory.

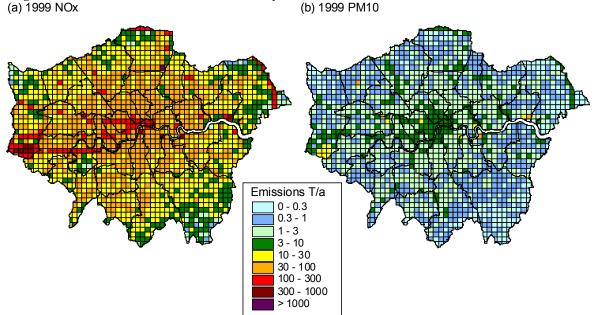


Figure 3.1 GLA December 2001 inventory total Emissions for 1999(a) 1999 NOx(b) 1999 PM10

Table 3.1	1999 Emission	totals from three	versions of th	e LAEI (Tonnes/year)
-----------	---------------	-------------------	----------------	----------------------

	Source Type	October 2001	December 2001	February 2002
NO _x	Road	51,402 (62%)	64,681 (67%)	65,308 (67%)
	Non-road	31,462 (38%)	31,462 (33%)	31,462 (33%)
	Total	82,864	96,143	96,770
VOC	Road	42,144 (42%)	42,144 (42%)	42,144 (42%)
	Non-road	58,999 (58%)	58,999 (58%)	58,999 (58%)
	Total	101,143	101,143	101,143
PM ₁₀	Road	3,100 (76%)	3,199 (77%)	3,073 (76%)
	Non-road	968 (24%)	968 (23%)	968 (24%)
	Total	4,068	4,167	4,041

Validation and Sensitivity Study of ADMS-Urban for London

4. Meteorological Data

Hourly sequential meteorological data from Heathrow in 1999 has been used for the majority of the modelling in this study. One of the scenarios employs data gathered at the London Weather Centre in 1999.

Table 4.1 summarises the meteorological data and indicates the number of hours that were suitable for use in the modelling. This excludes hours of calm, hours of variable wind direction and unavailable data. In this validation and sensitivity study only the hours where data were available for Heathrow, London Weather Centre and monitoring data have been used in the modelling.

Figure 4.1 compares the wind roses for the two meteorological sites, in general the wind speed at Heathrow is less than that at LWC, and the wind direction is more variable.

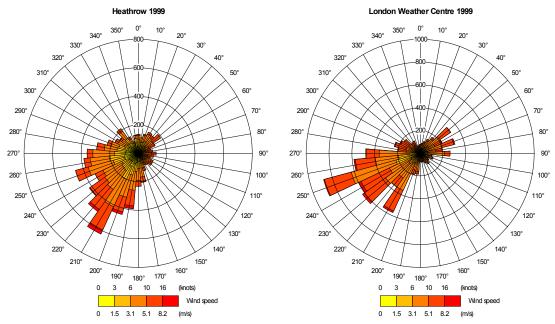
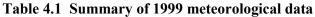
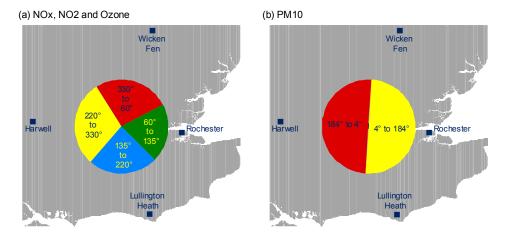



Figure 4.1 Windroses for Meteorological Data from London for 1999

		Heathrow		London Weather Centre			
Data Capture		99.8%			95.9%		
Height		10m			39m		
Roughness length		0.2m			lm		
Location		(507700, 1767	(00)	(530200, 180000)			
Statistics	Mean	Minimum	Maximum	Mean	Minimum	Maximum	
Temperature (°C)	11.8	-4.6	32.7	12.5	-1.3	31.9	
Wind speed (m/s)	3.1	0.0	12.9	4.0	0.5	12.9	
Precipitation (mm/hr)	0.1	0.0	17.8	0.1	0.0	13.8	
Cloud cover (oktas)	5.6	0.0	8.0	5.5	0.0	8.0	

5. Background Concentration Data

ADMS-Urban requires rural background concentration as input to the system. In the case of NO_x , NO_2 and O_3 monitored concentrations were utilized from Rochester, Harwell, Lullington Heath and Wicken Fen, the monitored concentration used for a particular hour depending upon the wind direction for that hour. The wind direction used was from Heathrow. Figure 5.1 shows the wind direction segments used for each background site. It shows that, for example, if the wind direction for a particular hour is blowing from between 60° and 135° then the background NO_x , NO_2 and O_3 concentrations are taken to be the monitored values for that hour at Rochester. The hour by hour values are summarised in Table 5.1.


In the case of PM_{10} monitored TEOM PM_{10} data from Rochester and Harwell were used. For each hour of the year either the Rochester or Harwell observation was chosen depending upon the wind direction for that hour. Again, the wind direction used was from Heathrow. The Rochester data were used for hours when the wind direction was between 4° and 184° otherwise the Harwell observation was chosen. The TEOM values were then converted to gravimetric units by multiplying by a factor of 1.3. It was assumed that the coarse component was 9.9 µg/m³ gravimetric and that 4.9 µg/m³ of this was contained within the monitored data, so a further 5 µg/m³ was added to the PM_{10} data to give the total background, as follows:

Total 1999 PM_{10} background = (Observed TEOM \times 1.3) + 5

The values are summarised in Table 5.1.

Part of the sensitivity study was modelling with worst case meteorological data. These are generally accepted to be 1996 for PM_{10} and 1997 for NO_x . Background data were similarly calculated for these years and are summarised in Table 5.1

Figure 5.1 Wind direction segments used to calculate background concentrations

		1999 met	Worst case met
NO _x	Annual Average	10	12
(ppb)	Maximum hourly average	179	160
	99.8 percentile	91	113
NO2	Annual Average	7	9
(ppb)	Maximum hourly average	49	43
	99.8 percentile	35	37
O ₃	Annual Average	29	27
(ppb)	Maximum hourly average	111	115
	99.8 percentile	87	86
PM ₁₀	Annual Average	23	25
$(\mu g/m^3)$	Maximum hourly average	126	209
	90.4 percentile of 24 hour averages	35	39
	98.1 percentile of 24 hour averages	47	55

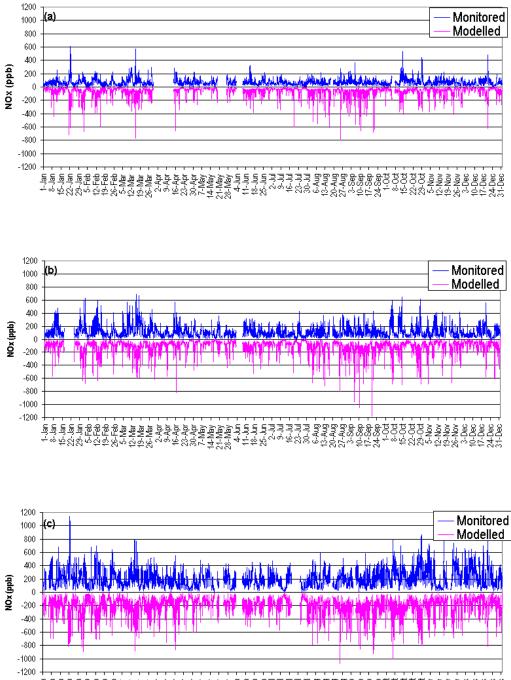
Table 5.2 1999 Background Concentrations for NO_x, NO₂, O₃ and PM₁₀

6. Model Validation

6.1 Overview

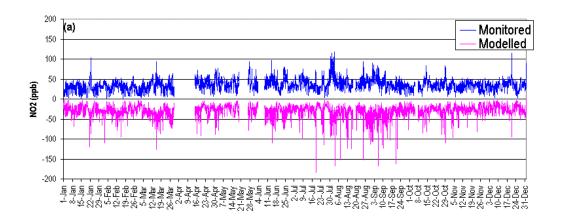
The purpose of model validation is to test the model performance against real data. Pollutant concentrations are predicted for each hour of the year. Predictions are not made for hours with inadequate meteorological data and the corresponding monitored value is disregarded. Two sets of meteorological data have been used, so in order to ensure all the results in this study are comparable to each other, predictions were not made for hours when either set of meteorological data was inadequate. Predictions for the hours where monitored data at the AURN site are missing are also disregarded, thus each predicted value has a one to one relationship with a monitored value.

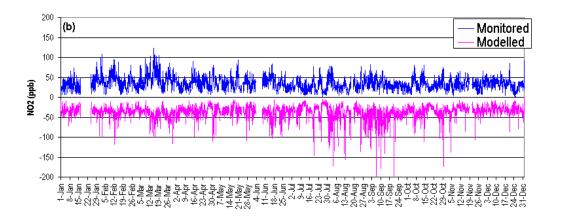
Examples of the predicted NO_x , NO_2 and PM_{10} values illustrated as a time series compared to the monitored values are given for Bloomsbury, Camden (Swiss Cottage) and Marylebone Road in Figures 6.1 to 6.3. Predicted values are shown as 'negative' for comparison purposes. Data series were produced for all of the AURN sites under consideration.


There are no straightforward techniques for determining whether a model is 'good' or 'bad' because model performance depends on so many different factors. These are connected with model input data, model set-up parameters and the model algorithms. In addition performance depends on the averaging time for the pollutant concentration, the pollutant itself and the location (e.g. roadside or background). Even if all these different effects could be disentangled and an appropriate validation scheme devised there remains the question of what is good or satisfactory and what is bad or unacceptable. In fact, much research has gone into devising acceptable validation techniques. The commonly used 'BOOT statistics' approach derives from that of Hanna and Paine (1989) and employs a series of statistical measures including the mean, correlation, normal mean square error and fractional bias.

An alternative approach could be based on that developed for the ASTM (American Society for Testing of Materials, 2001), however we employ the BOOT statistical approach in this study. Statistical measurements (described in Section 5.2) are presented separately for comparisons made at each site. Although using this approach no single statistical measure is used to assess a model's performance, the range of measures provides alternative ways of presenting information on model performance which, taken together can allow conclusions to be drawn. Examples of the use of this approach are detailed in Carruthers et al. (1997) and Oleson (1995).

It is assumed that the measured concentrations are accurate to within a few percent of the actual concentrations of pollutants in air. Except for ozone, this would be expected to be the case because the concentrations have been measured using continuous monitors. There may be some exceptions to this general rule, such as the Bromley AURN site, which is believed to be unrepresentative due to poor siting of the monitor and has therefore been omitted from this study. The error in ozone concentrations can be greater where the NO_x concentration is high and ozone concentration low.




Figure 6.1 Hourly Average Time Series for NO_x at (a) Bloomsbury, (b) Camden and (c) Marylebone Road

CERC

Figure 6.2 Hourly Average Time Series for NO₂ at (a) Bloomsbury, (b) Camden and (c) Marylebone Road

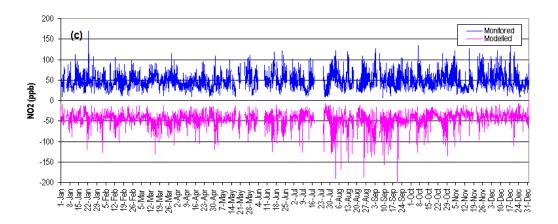
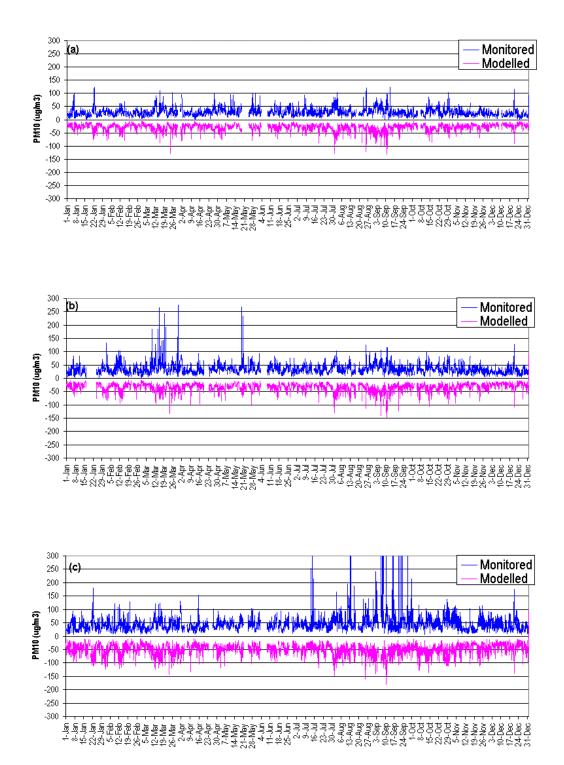



Figure 6.3 Hourly Average Time Series for PM_{10} at (a) Bloomsbury, (b) Camden and (c) Marylebone Road

CERC

6.2 Statistical Measures Calculated by the BOOT Statistical Package

The data format was hour-by-hour values for the measured (observed) concentrations (X_{o_i} , t = 1,2...,n) and predicted concentrations (X_{p_i} , t = 1,2...,n), where t is the time in hours. The following statistical measures were applied to the data sets.

- The mean or the annual averages $\overline{X_o}$ and $\overline{X_p}$.
- Any **percentiles** of interest because they represent the number of exceedences in the air quality standards.
- Standard deviation, The standard deviation is a measure of the scatter of observed and predicted concentrations:

$$\sigma_o = (\overline{\mathbf{X}_o^2} - \overline{\mathbf{X}_o}^2)^{1/2}, \ \sigma_p = (\overline{\mathbf{X}_p^2} - \overline{\mathbf{X}_p}^2)^{1/2}.$$

• Normalised mean square error (NMSE) – a normalised overall measure of the error in hour-by-hour comparisons between measured and predicted concentrations.

NMSE =
$$\frac{\overline{(X_o - X_p)^2}}{\overline{X_o X_p}}$$

• Correlation (R) – The correlation coefficient describes the relationship between two sets of data. It is calculated from the covariance of the data sets, which is the average of the products of deviations for each data point pair. An exact data match would give a correlation of 1.

$$\mathbf{R} = \frac{\left(\overline{\mathbf{X}_{o} - \overline{\mathbf{X}_{o}}}\right)\left(\overline{\mathbf{X}_{p} - \overline{\mathbf{X}_{p}}}\right)}{\sigma_{o}\sigma_{p}}$$

• **FA2** – this is the fraction of predicted concentrations within a factor of two of the equivalent measured values. If all predictions were with a factor of two of measurements the fraction would be 1.

$$FA2 = \sum_{i=1}^{N} \theta \left(X_{p} / X_{o} - 0.5 \right) \theta \left(2.0 - X_{p} / X_{o} \right) / N$$

(Where θ is the step function, = 1 for positive arguments; = 0 for negative arguments).

• Fractional bias (FB) – a measure of how the calculated mean differs from the observed mean, sometimes referred to as normalised bias. A value of zero indicates no difference, positive values indicate an underestimate in calculated concentrations and negative values indicate an overestimate.

$$FB = \frac{\overline{X_o} - \overline{X_p}}{\left(\overline{X_o} + \overline{X_p}\right)/2}$$

6.3 Base Case

A base scenario was used to predict pollutant concentrations at the locations of the London AURN sites. The December 2001 LAEI was used and the base model parameters are given in Table 6.1 The results of this modelling were compared with the concentrations measured at the London AURN sites during 1999.

Parameter	Value (m)
Surface roughness	1
Minimum Monin-Obukhov length	75
Initial traffic pollution mixing height	2
Area source grid depth	75
Meteorological data	Heathrow 1999, roughness at met site 0.2m

Table 6.1 Base model parameters

6.4 Validation - Comparisons between measured concentrations

Tables 6.2 to 6.5 present statistics of comparisons between measured concentrations and ADMS-Urban calculations. Statistics have been calculated based on hourly comparisons for each site, first for the roadside sites, then the background and other sites. Finally, sets of overall statistics have been calculated for roadside, background and all sites. Figures 6.4 to 6.9 present the statistics diagrammatically.

As discussed in Section 6.1, interpretation of the statistical analysis is not straightforward, however, it can be concluded that when all of the statistics are taken into account there is a good agreement between the predicted and measured data for each of the pollutants. This is shown by low values of normalised mean square error and fractional bias and high values for the correlation and fraction of points with a factor of 2 (hour by hour comparisons). This is true both for the individual site statistics and overall statistics. Specific points to note are as follows:

- Annual mean NO_x tends to be slightly underpredicted compared to measured values at roadside sites. However, there is some overprediction for the high (99.8) percentiles at both roadside and background sites.
- Overall, NO₂ values are well predicted with a very low fractional bias (0.02) and very close agreement between annual mean concentrations. Hour by hour comparisons of concentrations show somewhat greater error than shown by normalised mean square error (0.22). The 99.8 percentile values tend to be higher than the measured values as a result of some overprediction of peak values of NO_x .

- Ozone is in general slightly underpredicted with an overall fractional bias of 0.18. However, there are questions about the accuracy of ozone measurements at roadside sites.
- Overall, the predicted PM_{10} values show a good agreement with the measured values as shown by the low overall fractional bias (-0.05). The higher (98.1) percentile values show a slight tendency to underpredict the measured values. This is likely to result from the assumption that the coarse component of PM_{10} is constant.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	l able 6.2						NO _x concentrations (ppb)				
A3 134 120 598 534 101 90 0.35 0.71 0.80 0.11 Camden 110 107 556 638 86 94 0.65 0.53 0.73 0.02 Cromwell Road 134 136 503 611 77 105 0.54 0.44 0.64 -0.01 Haringey 71 60 499 455 60 62 0.78 0.57 0.69 0.18 Hounslow 100 69 565 465 83 76 0.71 0.69 0.57 0.37 Marylebone Road 204 201 784 772 131 131 0.38 0.54 0.76 0.02 Southwark 119 97 524 547 72 81 0.34 0.71 0.79 0.21 Sutton roadside 61 40 360 413 51 52 1.17 0.54 0.75 <		Annual	average	of he	ourly			e 0)	bjective		d bias e 0)
Camden 110 107 556 638 86 94 0.65 0.53 0.73 0.02 Cromwell Road 134 136 503 611 77 105 0.54 0.44 0.64 -0.01 Haringey 71 60 499 455 60 62 0.78 0.57 0.69 0.18 Hounslow 100 69 565 465 83 76 0.71 0.69 0.57 0.37 Marylebone Road 204 201 784 772 131 131 0.38 0.54 0.76 0.02 Southwark 119 97 524 547 72 81 0.34 0.71 0.79 0.21 Sutton roadside 61 40 330 413 51 52 1.17 0.54 0.47 0.42 Tower Hamlets 126 101 543 593 89 83 0.49 0.63 0.77		Monitored	Calculated	Monitored	Calculated	Monitored	Calculated	NMSI (objectiv	Correlation (1)	FA2 (objectiv	Normalise (objectiv
Camden 110 107 556 638 86 94 0.65 0.53 0.73 0.02 Cromwell Road 134 136 503 611 77 105 0.54 0.44 0.64 -0.01 Haringey 71 60 499 455 60 62 0.78 0.57 0.69 0.18 Hounslow 100 69 565 465 83 76 0.71 0.69 0.57 0.37 Marylebone Road 204 201 784 772 131 131 0.38 0.54 0.76 0.02 Southwark 119 97 524 547 72 81 0.34 0.71 0.79 0.21 Sutton roadside 61 40 330 413 51 52 1.17 0.54 0.47 0.42 Tower Hamlets 126 101 543 593 89 83 0.49 0.63 0.77	A3	134	120	598	534	101	90	0.35	0.71	0.80	0.11
Cromwell Road134136503611771050.540.440.64-0.01Haringey716049945560620.780.570.690.18Hounslow1006956546583760.710.690.570.37Marylebone Road2042017847721311310.380.540.760.02Southwark1199752454772810.340.710.790.21Sutton roadside614033041351521.170.540.470.42Tower Hamlets12610154359389830.490.630.750.22Roadside mean1159952956194990.590.660.690.13Bexley364136949943621.910.550.71-0.13Bloomsbury716242153649650.700.570.670.13Brent354036640247501.560.540.71-0.14Bridge Place555735146544640.790.630.78-0.04Hakkney715954046866620.900.560.700.77-0.21Lewisham736143447161 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Haringey716049945560620.780.570.690.18Hounslow1006956546583760.710.690.570.37Marylebone Road2042017847721311310.380.540.760.02Southwark1199752454772810.340.710.790.21Sutton roadside614033041351521.170.540.470.42Tower Hamlets12610154359389830.490.630.750.22Roadside mean1159952956194990.590.660.690.13Bexley364136949943621.910.550.71-0.13Bloomsbury716242153649650.700.570.670.13Brent354036640247501.560.540.71-0.14Bridge Place5557351465444640.790.630.78-0.02Hackney715954046866620.900.560.700.17-0.14Bridge Place5557351445464660.790.630.78-0.28Hackney7159540468666											
Hounslow1006956546583760.710.690.570.37Marylebone Road2042017847721311310.380.540.760.02Southwark1199752454772810.340.710.790.21Sutton roadside614033041351521.170.540.470.42Tower Hamlets12610154359389830.490.630.750.22Roadside mean1159952956194990.590.660.690.13Bexley364136949943621.910.550.71-0.13Bloomsbury716242153649650.700.570.670.13Brent354036640247501.560.540.71-0.14Bridge Place555735146544640.790.630.78-0.04Hakney715954046866620.900.560.700.17-0.13Horthwark urban625239150150660.880.620.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban6252391501											
Marylebone Road Southwark2042017847721311310.380.540.760.02Southwark roadside1199752454772810.340.710.790.21Sutton roadside614033041351521.170.540.470.42Tower Hamlets12610154359389830.490.630.750.22Roadside mean1159952956194990.590.660.690.13Bexley364136949943621.910.550.71-0.13Bloomsbury716242153649650.700.570.670.13Brent354036640247501.560.540.71-0.14Bridge Place555735146544640.790.630.78-0.04Eltham suburban344536755541692.300.550.74-0.28Hackney715954046866620.900.560.700.77-0.21Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre62<											
Southwark roadside1199752454772810.340.710.790.21Sutton roadside614033041351521.170.540.470.42Tower Hamlets12610154359389830.490.630.750.22Roadside mean1159952956194990.590.660.690.13Bexley364136949943621.910.550.71-0.13Bloomsbury716242153649650.700.570.670.13Brent354036640247501.560.540.71-0.14Bridge Place555735146544640.790.630.78-0.04Eltham suburban344536755541692.300.550.74-0.28Hackney715954046866620.900.560.700.71Hillingdon87108482750771060.650.700.77-0.21Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre6252391501											
Tower Hamlets12610154359389830.490.630.750.22Roadside mean1159952956194990.590.660.690.13Bexley364136949943621.910.550.71-0.13Bloomsbury716242153649650.700.570.670.13Brent354036640247501.560.540.71-0.14Bridge Place555735146544640.790.630.78-0.04Eltham suburban344536755541692.300.550.74-0.28Hackney715954046866620.900.560.700.18Hillingdon87108482750771060.650.700.77-0.21Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre625239150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Madsworth746740244063 </td <td>Southwark</td> <td></td>	Southwark										
Roadside mean1159952956194990.590.660.690.13Bexley364136949943621.910.550.71-0.13Bloomsbury716242153649650.700.570.670.13Brent354036640247501.560.540.71-0.14Bridge Place555735146544640.790.630.78-0.04Eltham suburban344536755541692.300.550.74-0.28Hackney715954046866620.900.560.700.18Hillingdon87108482750771060.650.700.77-0.21Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre625239150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Teddington273222333831451.610.590.670.10Wandsworth746740244063<	Sutton roadside	61	40	330	413	51	52	1.17	0.54	0.47	0.42
Bexley364136949943621.910.550.71-0.13Bloomsbury716242153649650.700.570.670.13Brent354036640247501.560.540.71-0.14Bridge Place555735146544640.790.630.78-0.04Eltham suburban344536755541692.300.550.74-0.28Hackney715954046866620.900.560.700.18Hillingdon87108482750771060.650.700.77-0.21Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre625239150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Teddington273222333831451.610.590.80-0.16Wandsworth746740244063630.670.590.670.10West London524838044545 <td< td=""><td>Tower Hamlets</td><td>126</td><td>101</td><td>543</td><td>593</td><td>89</td><td>83</td><td>0.49</td><td>0.63</td><td>0.75</td><td>0.22</td></td<>	Tower Hamlets	126	101	543	593	89	83	0.49	0.63	0.75	0.22
Bloomsbury Brent716242153649650.700.570.670.13Brent354036640247501.560.540.71-0.14Bridge Place555735146544640.790.630.78-0.04Eltham suburban344536755541692.300.550.74-0.28Hackney715954046866620.900.560.700.18Hillingdon87108482750771060.650.700.77-0.21Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre625239150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Teddington273222333831451.610.590.80-0.16Wandsworth746740244063630.670.590.670.10West London524838044545520.740.620.760.10Background mean5454391	Roadside mean	115	99	529	561	94	99	0.59	0.66	0.69	0.13
Brent354036640247501.560.540.71-0.14Bridge Place555735146544640.790.630.78-0.04Eltham suburban344536755541692.300.550.74-0.28Hackney715954046866620.900.560.700.18Hillingdon87108482750771060.650.700.77-0.21Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre625239150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Teddington273222333831451.610.590.80-0.16Wandsworth746740244063630.670.590.670.10West London524838044545520.740.620.760.10Background mean545439147754631.020.600.720.01	Bexley	36	41	369	499	43	62	1.91	0.55	0.71	-0.13
Bridge Place555735146544640.790.630.78-0.04Eltham suburban344536755541692.300.550.74-0.28Hackney715954046866620.900.560.700.18Hillingdon87108482750771060.650.700.77-0.21Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre625239150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Teddington273222333831451.610.590.80-0.16Wandsworth746740244063630.670.590.670.10West London524838044545520.740.620.760.10Background mean545439147754631.020.600.720.01	Bloomsbury			421		49		0.70	0.57	0.67	
Eltham suburban344536755541692.300.550.74-0.28Hackney715954046866620.900.560.700.18Hillingdon87108482750771060.650.700.77-0.21Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre625239150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Teddington273222333831451.610.590.80-0.16Wandsworth746740244063630.670.590.670.10West London524838044545520.740.620.760.10Background mean545439147754631.020.600.720.01	Brent		40	366		47	50	1.56	0.54	0.71	-0.14
Hackney715954046866620.900.560.700.18Hillingdon87108482750771060.650.700.77-0.21Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre625239150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Teddington273222333831451.610.590.80-0.16Wandsworth746740244063630.670.590.670.10West London524838044545520.740.620.760.10Background mean545439147754631.020.600.720.01	Bridge Place					44	-	0.79	0.63	0.78	-0.04
Hillingdon87108482750771060.650.700.77-0.21Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre625239150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Teddington273222333831451.610.590.80-0.16Wandsworth746740244063630.670.590.670.10West London524838044545520.740.620.760.10Background mean545439147754631.020.600.720.01	Eltham suburban										
Lewisham736143447161630.770.580.690.17North Kensington435340342249551.010.610.78-0.20Southwark urban centre625239150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Teddington273222333831451.610.590.80-0.16Wandsworth746740244063630.670.590.670.10West London524838044545520.740.620.760.10Background mean545439147754631.020.600.720.01	Hackney		59		468	66	62	0.90	0.56	0.70	0.18
North Kensington 43 53 403 422 49 55 1.01 0.61 0.78 -0.20 Southwark urban centre 62 52 391 501 50 66 0.88 0.62 0.61 0.18 Sutton suburban 34 35 348 381 42 48 1.45 0.57 0.72 -0.04 Teddington 27 32 223 338 31 45 1.61 0.59 0.80 -0.16 Wandsworth 74 67 402 440 63 63 0.67 0.59 0.67 0.10 West London 52 48 380 445 45 52 0.74 0.62 0.76 0.10 Background 54 54 391 477 54 63 1.02 0.60 0.72 0.01											
Southwark urban centre625239150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Teddington273222333831451.610.590.80-0.16Wandsworth746740244063630.670.590.670.10West London524838044545520.740.620.760.10Background mean545439147754631.020.600.720.01											
centre62525350150150660.880.620.610.18Sutton suburban343534838142481.450.570.72-0.04Teddington273222333831451.610.590.80-0.16Wandsworth746740244063630.670.590.670.10West London524838044545520.740.620.760.10Background mean545439147754631.020.600.720.01	North Kensington	43	53	403	422	49	55	1.01	0.61	0.78	-0.20
Teddington 27 32 223 338 31 45 1.61 0.59 0.80 -0.16 Wandsworth 74 67 402 440 63 63 0.67 0.59 0.67 0.10 West London 52 48 380 445 45 52 0.74 0.62 0.76 0.10 Background mean 54 54 391 477 54 63 1.02 0.60 0.72 0.01		62	52	391	501	50	66	0.88	0.62	0.61	0.18
Wandsworth 74 67 402 440 63 63 0.67 0.59 0.67 0.10 West London 52 48 380 445 45 52 0.74 0.62 0.76 0.10 Background mean 54 54 391 477 54 63 1.02 0.60 0.72 0.01	Sutton suburban										
West London 52 48 380 445 45 52 0.74 0.62 0.76 0.10 Background mean 54 54 391 477 54 63 1.02 0.60 0.72 0.01											
Background mean 54 54 391 477 54 63 1.02 0.60 0.72 0.01									0.59	0.67	0.10
mean 54 54 591 477 54 65 1.02 0.60 0.72 0.01	West London	52	48	380	445	45	52	0.74	0.62	0.76	0.10
		54	54	391	477	54	63	1.02	0.60	0.72	0.01
Uveran statistic 70 72 447 512 77 65 0.77 0.07 0.70 0.09	Overall statistic	78	72	449	512	79	83	0.79	0.67	0.70	0.09

 Table 6.2 1999 Monitored and calculated NO_x concentrations (ppb)

l able 6.3	1333 WI	onnored	i anu ca	iculateu	102 co	ncentra	itions (p	hn)		
	Annual	average	of he	ercentile ourly rage	Stan devia		e 0)	bjective	e 1)	d bias e 0)
	Monitored	Calculated	Monitored	Calculated	Monitored	Calculated	NMSE (objective 0)	Correlation (objective 1)	FA2 (objective	Normalised bias (objective 0)
A3	31	35	94	104	13	14	0.18	0.53	0.90	-0.14
Camden	34	37	94	127	15	16	0.20	0.49	0.89	-0.07
Cromwell Road	49	40	103	123	17	16	0.19	0.45	0.91	0.20
Haringey	27	29	78	108	12	14	0.18	0.60	0.92	-0.08
Hounslow	31	28	77	95	13	14	0.16	0.65	0.87	0.11
Marylebone Road	48	45	120	131	18	17	0.14	0.52	0.95	0.05
Southwark roadside	39	35	93	111	15	13	0.12	0.65	0.95	0.11
Sutton roadside	23	21	65	89	13	14	0.28	0.61	0.78	0.06
Tower Hamlets	37	37	95	121	14	15	0.15	0.52	0.93	0.00
Roadside mean	35	33	90	114	17	16	0.19	0.60	0.89	0.04
Bexley	19	21	61	122	11	15	0.37	0.61	0.81	-0.09
Bloomsbury	35	30	99	115	14	14	0.21	0.53	0.88	0.17
Brent	20	23	68	98	12	14	0.32	0.62	0.82	-0.17
Bridge Place	33	28	81	108	13	14	0.19	0.61	0.90	0.18
Eltham suburban	19	22	65	121	11	15	0.39	0.61	0.84	-0.17
Hackney	31	29	99	104	14	14	0.20	0.58	0.90	0.09
Hillingdon	26	33	71	116	12	15	0.20	0.67	0.86	-0.23
Lewisham	28	29	69	110	11	13	0.18	0.53	0.92	-0.02
North Kensington	24	27	73	98	13	14	0.21	0.63	0.89	-0.11
Southwark urban centre	29	26	77	115	12	15	0.20	0.63	0.88	0.14
Sutton suburban	18	20	58	87	11	13	0.30	0.63	0.84	-0.09
Teddington	17	18	59	83	12	13	0.29	0.70	0.85	-0.06
Wandsworth	27	31	78	101	14	13	0.25	0.46	0.80	-0.12
West London	29	25	75	96	12	13	0.18	0.63	0.91	0.13
Background mean	25	26	74	105	14	14	0.24	0.61	0.86	-0.01
Overall statistic	29	29	81	109	16	16	0.22	0.63	0.87	0.02

Table 6.3 1999 Monitored and calculated NO2 concentrations (ppb)

1 abic 0.4	1777 MIU	intoi cu an	u calculat		centration	<u>s (hhn)</u>		
	Annual	average	Standard	deviation	(0	n (J	1)	bias 0)
	Monitored	Calculated	Monitored	Calculated	NMSE (objective (Correlation (objective 1)	FA2 (objective	Normalised I (objective
Marylebone Road	6.6	2.7	7.1	4.6	2.49	0.63	0.25	0.83
Roadside Mean	6.6	2.7	7.1	4.6	2.49	0.63	0.25	0.83
Bexley	20	18	14	15	0.24	0.81	0.64	0.12
Bloomsbury	12	11	11	12	0.43	0.78	0.53	0.05
Brent	20	16	15	14	0.27	0.85	0.65	0.23
Bridge Place	17	13	13	13	0.35	0.81	0.57	0.25
Eltham	20	17	15	14	0.24	0.84	0.67	0.18
Hackney	15	12	13	12	0.38	0.82	0.61	0.25
Hillingdon	13	8	12	10	0.70	0.81	0.42	0.44
Lewisham	11	11	10	12	0.52	0.75	0.51	-0.07
North Kensington	18	13	15	13	0.39	0.84	0.59	0.33
Southwark urban centre	15	14	13	14	0.26	0.84	0.62	0.06
Sutton suburban	18	18	14	14	0.23	0.81	0.74	-0.01
Teddington	22	20	15	15	0.18	0.83	0.72	0.09
Wandsworth	13	10	12	11	0.61	0.75	0.49	0.30
Background mean	16	14	14	13	0.33	0.82	0.59	0.16
Overall statistic	16	13	14	13	0.35	0.82	0.57	0.18

Table 6.4 1999 Monitored and calculated O3 concentrations (ppb)

Table 6.5	1999 Monitored and	l calculated PM ₁₀	concentrations	$(\mu g/m^3)$
-----------	--------------------	-------------------------------	----------------	---------------

		nual rage	percer 24	.4 th ntile of hr rage	98. percen 24 hr a	tile of	Stan devia	dard ation	E (e 0)	ion ve 1)	e 1)	d bias e 0)
	Monitored	Calculated	Monitored	Calculated	Monitored	Calculated	Monitored	Calculated	NMSE (objective	Correlation (objective 1	FA2 (objective	Normalised bias (objective 0)
A3	30	31	46	44	59	59	16	13	0.15	0.71	0.90	-0.06
Camden	34	33	50	47	68	62	18	15	0.19	0.61	0.93	0.03
Haringey	28	29	42	41	59	53	15	12	0.13	0.71	0.95	-0.01
Marylebone Road	46	49	67	68	109	83	42	20	0.71	0.36	0.90	-0.06
Sutton roadside	26	26	40	39	48	51	14	12	0.21	0.60	0.94	-0.02
Roadside mean	33	34	49	47	69	62	25	17	0.4	0.55	0.92	-0.03
Bexley	25	26	42	38	61	48	16	12	0.22	0.68	0.89	-0.04
Bloomsbury	28	29	42	41	59	54	14	13	0.14	0.69	0.94	-0.01
Brent	23	26	38	38	46	52	14	12	0.21	0.65	0.90	-0.13
Eltham	23	27	35	38	47	48	12	12	0.19	0.67	0.92	-0.16
Hillingdon	27	29	42	41	58	59	17	13	0.22	0.65	0.88	-0.08
North Kensington	27	27	42	39	59	53	15	12	0.14	0.73	0.95	0.00
Background mean	26	27	40	39	55	52	15	12	0.19	0.67	0.91	-0.07
Overall statistic	29	30	44	43	61	57	20	15	0.31	0.60	0.92	-0.05

Figure 6.4 Comparison of 1999 Measured and Predicted Annual Average, Percentile and Standard Deviation Data Pairs for NO_x, NO₂ and O₃

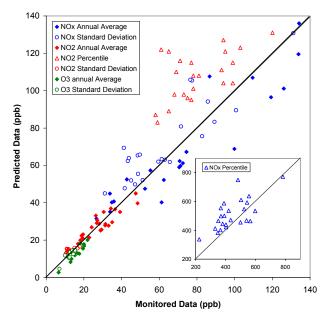


Figure 6.5 Comparison of 1999 Measured and Predicted Annual Average, Percentile and Standard Deviation Data Pairs for PM_{10}

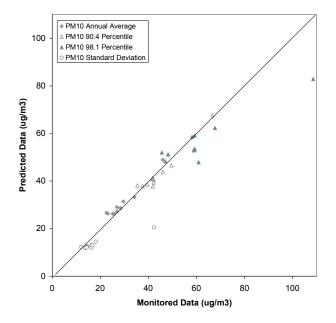


Figure 6.6 1999 Normalised Mean Square Error (NMSE) Values (Exact Match 0)

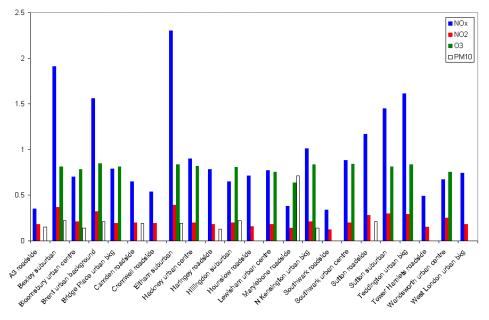


Figure 6.7 1999 Correlation Values (Exact Match 1)

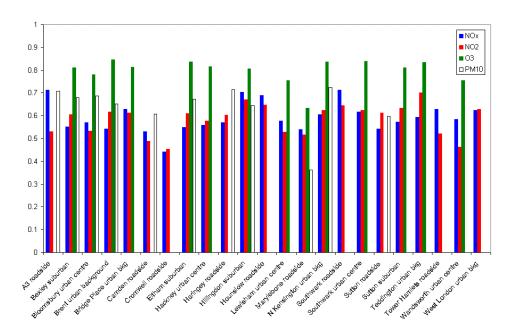


Figure 6.8 1999 FA2 Values (Exact Match 1)

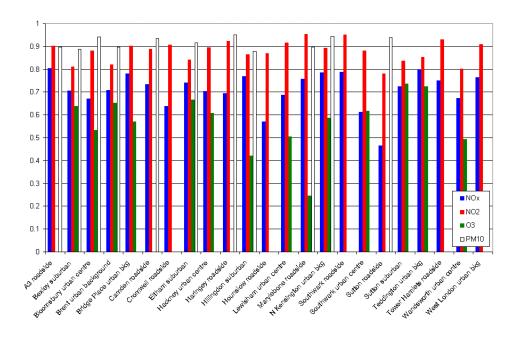
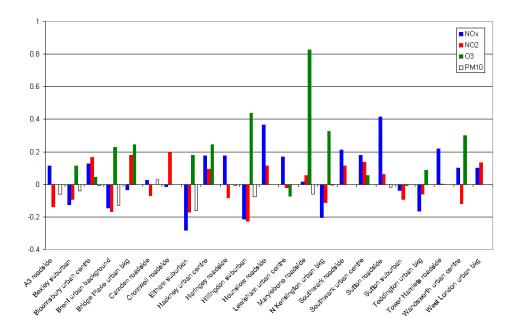



Figure 6.9 1999 Fractional Bias Values (Exact Match 0)

7. Sensitivity Study

Concentrations of NO_x , NO_2 , ozone and PM_{10} have been calculated at each site for six scenarios plus the base scenario using 1999 emissions. Calculated concentrations have been compared to one another and to the monitored concentrations during 1999.

7.1 Modelled Scenarios

The majority of the calculations use the GLA December 2001 London emissions inventory for 1999, which was calculated using the consultation traffic emission factors issued in October 2001. However, a comparison has been made using the GLA October 2001 inventory for 1999 issued using the original traffic emission factors.

The base model parameters used in the modelling were shown in Table 6.1. Table 7.1 shows the scenarios considered in the sensitivity modelling. These include changes in the global parameters of the model (grid source depth, minimum Monin Obukhov length to limit urban stability and surface roughness) to account for the uncertainty in these parameters, the impact of using data from the London Weather Centre rather than Heathrow, the impact of the earlier emissions inventory and finally the impact of the meteorological year.

Tables 7.2 to 7.9 summarise the calculated concentrations for each scenario. These include the BOOT statistical analysis of all sites and mean values, separately calculated for roadside, background and all sites.

In the tables of statistics it would not be sensible to compare scenario 6 with the monitored concentrations as it uses a different meteorological year; it has been modelled to give an indication of the effect yearly variation in meteorology can have upon concentrations. Therefore only the average calculated concentrations and the standard deviation of concentrations have been shown for this scenario.

Scenario	Parameter Changed	New Parameter Value
1	Grid source depth	50m (75m)
2	Minimum Monin-Obukhov length	50m (75m)
3	Met data, roughness at met site	London Weather Centre 1999, roughness at met site 1m
4	Emissions Inventory	GLA October 2001 emissions
5	Surface roughness (m)	1.5 (1m)
6	Meteorological year (1999 emissions with 1996/97 meteorology)	1997 Heathrow met data for NO_x , NO_2 and O_3 calculations. 1996 Heathrow met data for PM_{10} calculations. Plus appropriate background data.

 Table 7.1 Sensitivity scenarios (base case values in brackets)

Table 7.2 Ann	ual Avera	$g \in \Pi O_X \cup U$	neenti attu	n (hhn)				
	1999 monitored	Base Scenario	Scenario 1 Grid height	Scenario 2 L _{MO}	Scenario 3 Met site	Scenario 4 Inventory	Scenario 5 Z ₀	Scenario 6 Met year
A3	134	119	120	128	104	103	117	124
Camden	110	107	108	117	80	92	103	110
Cromwell Road	134	136	138	146	114	115	137	145
Haringey	71	60	61	67	43	53	56	63
Hounslow	100	69	69	77	54	61	64	72
Marylebone Road	204	201	203	214	178	167	199	204
Southwark roadside	119	96	97	105	81	82	95	108
Sutton roadside	61	40	41	45	28	36	38	46
Tower Hamlets	126	101	102	111	84	87	97	102
Roadside mean	118	103	104	112	85	88	101	108
Bexley	36	41	41	47	26	36	38	38
Bloomsbury	71	62	66	70	45	55	58	65
Brent	35	40	41	46	30	36	38	44
Bridge Place	55	57	59	65	40	51	54	58
Eltham suburban	34	45	45	52	28	40	42	42
Hackney	70	59	60	67	42	52	56	62
Hillingdon	87	108	109	118	86	93	100	101
Lewisham	73	61	62	69	42	53	57	63
North Kensington	43	53	55	60	39	47	49	56
Southwark urban centre	62	52	54	59	34	47	49	52
Sutton suburban	34	35	36	40	23	32	33	38
Teddington	27	31	32	36	22	29	30	34
Wandsworth	74	67	68	75	51	58	63	71
West London	52	47	49	54	35	43	45	51
Background mean	54	54	56	61	39	48	51	55
Overall mean	79	72	73	79	56	62	69	75
% error	-	-9%	-8%	1%	-29%	-26%	-14%	4%*
Standard Deviation	78.9	83.3	84.0	93.6	57.5	71.9	80.31	83.26
NMSE	0	0.79	0.78	0.84	0.81	0.85	0.82	-
Correlation	1	0.669	0.669	0.661	0.720	0.662	0.659	-
FA2	1	0.698	0.706	0.687	0.707	0.665	0.7	-
Fractional Bias	0	0.089	0.074	-0.011	0.329	0.227	0.134	-

 Table 7.2 Annual Average NO_x concentration (ppb)

* percentage difference from base case rather than the monitored value

Table 7.5 77.0	Per cent	ne or nour	ly average		centr ation	(PPD)		
	1999 monitored	Base Scenario	Scenario 1 Grid height	Scenario 2 L _{MO}	Scenario 3 Met site	Scenario 4 Inventory	Scenario 5 Z ₀	Scenario 6 Met year
A3	598	534	535	595	392	469	551	592
Camden	556	638	641	713	385	559	640	647
Cromwell Road	503	611	614	658	443	541	712	602
Haringey	499	455	458	526	240	403	474	486
Hounslow	565	464	465	511	293	411	486	533
Marylebone Road	784	772	781	859	581	668	754	780
Southwark roadside	524	547	548	629	309	490	539	533
Sutton roadside	330	413	415	435	211	368	437	408
Tower Hamlets	543	593	594	653	373	508	674	572
Roadside mean	545	559	561	620	359	491	585	573
Bexley	369	498	499	594	194	440	532	433
Bloomsbury	421	536	540	540	253	477	578	464
Brent	366	402	402	456	210	360	411	405
Bridge Place	351	465	467	480	246	410	515	450
Eltham suburban	367	555	555	651	200	488	622	457
Hackney	540	468	468	523	251	411	502	449
Hillingdon	482	750	760	889	443	670	657	735
Lewisham	434	471	472	533	212	417	507	404
North Kensington	403	422	424	458	246	377	450	404
Southwark urban centre	391	501	502	539	213	441	554	438
Sutton suburban	348	381	382	426	177	345	391	349
Teddington	223	338	338	383	200	314	364	351
Wandsworth	402	440	441	492	266	398	474	454
West London	380	445	446	445	225	400	477	391
Background mean	391	477	478	529	238	425	502	442
Overall Mean	448	512	514	569	285	454	537	493
% error	-	14%	15%	27%	-36%	1%	20%	10%*
* noraantaga diffar			1, 1,	•/ 1 1	•			

Table 7.3 99.8th percentile of hourly average NO_x concentration (ppb)

* percentage difference from base case rather than the monitored value

CERC

Table 7.4 Ann	ual Avela		neenti atte	n (hho)			r	
	1999 monitored	Base Scenario	Scenario 1 Grid height	Scenario 2 L _{MO}	Scenario 3 Met site	Scenario 4 Inventory	Scenario 5 Z ₀	Scenario 6 Met year
A3	31	35	35	36	35	33	35	36
Camden	34	37	37	38	35	35	37	37
Cromwell Road	48	40	40	41	39	38	40	41
Haringey	27	29	29	30	27	28	29	30
Hounslow	31	28	28	29	28	27	27	29
Marylebone Road	47	45	45	46	43	43	45	45
Southwark roadside	39	35	35	36	35	33	35	37
Sutton roadside	23	21	22	22	19	20	21	23
Tower Hamlets	37	36	37	37	36	35	36	37
Roadside mean	35	34	34	35	33	32	34	35
Bexley	19	21	21	22	18	20	21	20
Bloomsbury	35	30	31	30	28	28	29	30
Brent	20	23	23	24	21	22	23	24
Bridge Place	33	28	28	29	25	26	27	28
Eltham suburban	19	22	23	23	20	21	22	22
Hackney	31	29	29	29	26	27	29	29
Hillingdon	26	33	33	34	31	31	33	33
Lewisham	28	29	29	30	26	27	28	29
North Kensington	24	27	28	28	25	26	27	28
Southwark urban centre	29	26	26	27	23	24	25	26
Sutton suburban	18	20	20	21	17	19	19	21
Teddington	17	18	18	19	16	17	18	19
Wandsworth	27	31	31	31	29	29	30	31
West London	29	25	26	26	23	24	25	26
Background	25	26	26	27	23	24	25	26
mean					-			
Overall mean	29	29	29	30	27	27	29	29
% error	-	-2%	-1%	1%	-8%	-8%	-3%	2%*
Standard	15.6	15.8	15.7	16.3	13.4	15.3	15.9	15.7
Deviation								
NMSE	0	0.22	0.21	0.22	0.18	0.23	0.23	-
Correlation	1	0.631	0.632	0.627	0.685	0.628	0.621	-
FA2	1	0.874	0.877	0.871	0.883	0.862	0.873	-
Fractional Bias	0	0.02	0.008	-0.01	0.077	0.075	0.028	-

Table 7.4 Annual Average NO2 concentration (ppb)

* percentage difference from base case rather than the monitored value

Table 7.3 77.8	percent	ie of nour	ij averag		eentr ation	(PPS)		
	1999 monitored	Base Scenario	Scenario 1 Grid height	Scenario 2 L _{MO}	Scenario 3 Met site	Scenario 4 Inventory	Scenario 5 Z _o	Scenario 6 Met year
A3	94	104	104	105	94	101	108	104
Camden	94	127	128	131	95	122	129	126
Cromwell Road	103	123	124	128	100	118	135	123
Haringey	78	108	108	112	74	105	111	113
Hounslow	77	95	95	100	78	92	99	93
Marylebone Road	120	131	131	134	112	128	134	133
Southwark roadside	93	111	112	114	95	106	115	107
Sutton roadside	65	89	89	92	62	87	93	91
Tower Hamlets	95	121	122	125	95	117	128	122
Roadside mean	91	112	113	116	89	108	117	112
Bexley	61	122	122	127	64	116	137	100
Bloomsbury	99	115	116	119	76	112	123	109
Brent	68	98	98	103	71	95	106	93
Bridge Place	81	108	109	116	71	106	118	96
Eltham suburban	65	121	121	128	61	115	135	95
Hackney	99	104	104	109	74	101	110	113
Hillingdon	71	116	116	123	90	111	121	102
Lewisham	69	110	110	117	62	107	114	91
North Kensington	73	98	98	100	77	95	101	93
Southwark urban centre	77	115	115	118	66	112	122	99
Sutton suburban	58	87	87	92	53	83	89	85
Teddington	59	83	83	88	63	81	85	81
Wandsworth	78	101	101	105	75	97	106	95
West London	75	96	97	97	73	94	102	91
Background mean	74	105	106	110	69	102	112	96
Overall mean	81	109	109	113	77	105	115	102
% error	-	35%	35%	40%	-4%	30%	42%	6%*
* noroontogo diffor	0 1	.1	.1 .1					

Table 7.5 99.8th percentile of hourly average NO₂ concentration (ppb)

* percentage difference from base case rather than the monitored value

CERC

Tuble /10 / Imi	Table 7.6 Annual Average 03 concentration (ppb)											
	1999 monitored	Base Scenario	Scenario 1 Grid height	Scenario 2 L _{MO}	Scenario 3 Met site	Scenario 4 Inventory	Scenario 5 Z ₀	Scenario 6 Met year				
Marylebone Road	7	3	3	3	2	3	3	3				
Roadside mean	7	3	3	3	2	3	3	3				
Bexley	20	18	18	17	19	19	18	18				
Bloomsbury	12	11	11	11	12	12	11	10				
Brent	19	15	15	15	17	16	16	15				
Bridge Place	17	13	13	13	14	14	13	12				
Eltham	20	17	17	16	18	18	17	16				
Hackney	15	12	12	12	12	13	12	11				
Hillingdon	13	8	8	8	8	9	8	8				
Lewisham	10	11	11	11	12	13	12	10				
North Kensington	18	13	12	12	13	14	13	12				
Southwark urban centre	15	14	14	14	15	15	14	14				
Sutton suburban	18	18	18	18	20	19	19	21				
Teddington	22	20	20	19	21	21	20	18				
Wandsworth	13	10	10	10	10	11	10	9				
Background mean	16	14	14	14	15	15	14	13				
Overall mean	16	13	13	13	14	14	13	12				
% error	_	-17%	-18%	-19%	-12%	-10%	-15%	-5%*				
Standard	10.5											
Deviation	13.6	13.3	13.2	13.3	12.5	13.6	13.2	13.4				
NMSE	0	0.35	0.36	0.37	0.33	0.31	0.35	-				
Correlation	1	0.819	0.82	0.82	0.806	0.819	0.815	-				
FA2	1	0.569	0.564	0.551	0.611	0.595	0.575	-				
Fractional Bias	0	0.178	0.198	0.208	0.131	0.1	0.164	-				
* percentage differ	anaa fram h	an anga rath		anitanad ral								

 Table 7.6 Annual Average O3 concentration (ppb)

* percentage difference from base case rather than the monitored value

	alculated all		ge I MIIO	oncenti at	ions (µg/n	u)	I	
	1999 monitored	Base Scenario	Scenario 1 Grid height	Scenario 2 L _{MO}	Scenario 3 Met site	Scenario 4 Inventory	Scenario 5 Z ₀	Scenario 6 Met year
A3	30	31	31	32	30	32	31	31
Camden	34	33	33	34	31	33	33	33
Haringey	28	29	29	29	27	29	28	29
Marylebone Road	46	49	49	50	46	48	49	46
Sutton roadside	26	26	26	27	25	26	26	28
Roadside mean	33	34	34	34	32	34	33	33
Bexley	25	26	26	27	25	26	26	27
Bloomsbury	28	29	29	29	27	28	28	29
Brent	23	26	26	27	25	26	26	27
Eltham	23	27	27	27	25	27	26	27
Hillingdon	27	29	29	30	28	29	29	29
North Kensington	27	27	27	28	26	27	27	28
Background mean	26	27	27	28	26	27	27	28
Overall mean	29	30	30	31	29	30	30	30
% error	-	4%	5%	6%	0%	4%	3%	1%*
Standard	20.25	14.84	14.84	15.42	13.61	14.66	14.63	14.64
Deviation								11.01
NMSE	0	0.31	0.31	0.31	0.31	0.31	0.31	-
Correlation	1	0.604	0.604	0.597	0.613	0.602	0.607	-
FA2	1	0.917	0.917	0.911	0.923	0.917	0.918	-
Fractional Bias	0	-0.046	-0.049	-0.068	0.005	-0.042	-0.036	-

Table 7.7 Calculated annual average PM_{10} concentrations ($\mu g/m^3$)

* percentage difference from base case rather than the monitored value

Table 7.0 C	alculated 90	percenti	le of daily	average i	WI10 CONC	entration	<u>(µg/m)</u>	
	1999 monitored	Base Scenario	Scenario 1 Grid height	Scenario 2 L _{MO}	Scenario 3 Met site	Scenario 4 Inventory	Scenario 5 Z ₀	Scenario 6 Met year
A3	46	43	44	44	43	44	43	46
Camden	49	46	47	48	42	47	46	47
Haringey	42	40	41	41	39	40	40	44
Marylebone Road	65	67	67	70	63	66	66	66
Sutton roadside	39	38	38	39	38	38	37	42
Roadside mean	48	47	47	48	45	47	46	49
Bexley	41	37	37	39	36	37	37	41
Bloomsbury	42	40	41	42	39	40	40	44
Brent	37	38	38	38	37	38	38	42
Eltham	35	38	51	52	37	51	51	41
Hillingdon	41	41	41	42	40	41	40	45
North Kensington	42	39	39	40	38	39	38	43
Background mean	40	39	41	42	38	41	41	43
Overall mean	44	43	44	45	41	44	43	46
% error	-	-3%	1%	3%	-6%	0%	-1%	7%*

Table 7.8 Calculated 90th percentile of daily average PM₁₀ concentration (µg/m³)

* percentage difference from base case rather than the monitored value

$(\mu g/m^2)$		n		-	•	-		1
	1999 monitored	Base Scenario	Scenario 1 Grid height	Scenario 2 L _{MO}	Scenario 3 Mat site	Scenario 4 Inventory	Scenario 5 Z ₀	Scenario 6 Met year
A3	59	59	59	60	55	59	59	67
Camden	68	62	63	65	58	63	61	69
Haringey	59	53	54	55	51	54	53	62
Marylebone Road	109	83	83	86	79	81	81	87
Sutton roadside	48	51	51	52	49	51	51	61
Roadside mean	69	62	62	63	58	62	61	69
Bexley	61	48	48	48	48	48	48	59
Bloomsbury	59	54	54	55	52	53	53	65
Brent	46	52	52	53	49	52	52	59
Eltham	47	48	48	50	48	48	48	61
Hillingdon	58	59	59	59	54	58	58	63
North Kensington	59	53	53	55	51	53	52	61
Background mean	55	52	52	53	50	52	52	61
Overall mean	61	57	57	58	54	56	56	65
% error	-	-8%	-7%	-5%	-12%	-8%	-8%	15%*

Table 7.9 Calculated 98.1th percentile of daily average PM_{10} concentration (ug/m³)

 % error
 -8%
 -7%
 -5%

 * percentage difference from base case rather than the monitored value

7.2 Summary of Results

The results of the sensitivity study are summarised in Table 7.10, which is a compilation of the differences between the overall mean of background and predicted concentrations. This is '% error' in the tables.

	Base scenario	Scenario 1 Grid height	Scenario 2 L _{MO}	Scenario 3 Met site	Scenario 4 Inventory	Scenario 5 Z ₀	Scenario 6 Met year*
Annual average NO _x	-9	-8	1	-29	-26	-14	4
99.8 th percentile of hourly average NO _x	14	15	27	-36	1	20	10
Annual average NO ₂	-2	-1	1	-8	-8	-3	2
99.8 th percentile of hourly average NO ₂	35	35	40	-4	30	42	6
Annual average O ₃	-17	-18	-19	-12	-10	-15	5
Annual average PM ₁₀	4	5	6	0	4	3	1
90 th percentile of 24 hour average PM_{10}	-3	1	3	-6	0	-1	7
98.1 th percentile of 24 hour average PM ₁₀	-8	-7	-5	-12	-8	-8	15

Table 7.10 Summary of errors (%) of observed overall mean concentrations

* percentage difference from base case rather than the monitored value

Examination of tables 7.2 to 7.9 and the summary table shows that replacing Heathrow meteorological data with data from the London Weather Centre (LWC) (Scenario 3) results in one of the largest changes to concentrations. There is a substantial reduction in calculated concentrations of NO_x and NO_2 , and corresponding increase in ozone concentrations.

Use of the October inventory (scenario 4) also leads to reduced calculated concentrations, as this inventory used traffic emission factors which gave lower total emissions of NO_x and PM_{10} . Increasing the surface roughness (scenario 5) also decreases the calculated concentrations, as the higher roughness results in more effective mixing of pollutants

The base scenario and scenarios 1 and 2 show the best agreement with monitored data. Decreasing the grid source depth to 50m (scenario 1), increases all calculated concentrations (except ozone), as the initial mixing height of the pollution is reduced.

Decreasing the minimum Monin-Obukhov length to 50m effectively reduces the mixing rate, and therefore also leads to increased calculated concentrations compared to the base scenario.

7.3 Uncertainty

Annual average concentration maps have been produced with ADMS-Urban using the base case scenarios for 1999, 2005 and 2010. In addition maps for PM_{10} have been produced using the accepted worst case meteorological year for this pollutant, 1996. The maps and the methodology used to produce them are presented in the map report

(Blair et al., 2003). The effect of uncertainty on the area of London exceeding certain threshold values was also presented in the map report for the annual average maps.

Uncertainty in the modelled annual average calculation leads to uncertainty in the number of road lengths exceeding annual mean standards for NO_2 and PM_{10} maps. In order to give an indication of the extent of this uncertainty, the maps were analysed to determine the length of roads predicted to exceed certain threshold values for the predicted value \pm 5%. Spatial variations in concentration are predicted along and across road segments therefore average concentrations are calculated along each road segment. The total road length is 3,656 km.

The results are presented in Table 7.11 in terms of percentage of total road length exceeding a range of threshold values, which in the case of NO_2 and PM_{10} , include the 2004, 2005 and 2010 annual average air quality objectives. The values given in brackets are for the worst case meteorological conditions.

It can be seen that the estimated 5% uncertainty in concentration has limited impact on the percentage of road length exceeding the NO₂ annual mean standard (40 μ g/m³). For PM₁₀ in some cases, notably the London 2010 standard (23 μ g/m³) in 2004 and the EU 2010 standard (20 μ g/m³) in 2010, the uncertainty greatly impacts on the number of roads exceeding the standard.

Table 7.11 The percentage of road length exceeding concentration thresholds for the modelled concentration (C_m) and for $C_m \pm 5\%$ (estimated overall uncertainty in annual average NO₂ and PM₁₀ concentrations = 5%), the range of percentages represents the uncertainty. Predictions using worst case meteorological conditions given in brackets.

conditions given in brackets.											
		1999			2004/5			2010			
Threshold	C _m -	Cm	Cm	C _m -	Cm	Cm	C _m -5%	Cm	C _m +5%		
$(\mu g/m^3)$	5%		+5%	5%		+5%					
$NO_{x} > 30$	100	100	100	100	100	100	100	100	100		
$NO_{x} > 40$	100	100	100	100	100	100	96	98	99		
$NO_{x} > 50$	100	100	100	95	97	99	76	183	88		
$NO_{x} > 60$	97	98	99	81	87	90	48	55	63		
$NO_2 > 20$	100	100	100	100	100	100	100	100	100		
$NO_2 > 30$	99	100	100	96	98	99	82	89	94		
$NO_2 > 40$	81	89	94	50	62	73	25	35	44		
$NO_2 > 50$	30	42	54	11	17	24	3	6	10		
$PM_{10} > 20$	100	100	100	100	100	100	26 (100)	91 (100)	100 (100)		
$PM_{10} > 23$	100	100	100	46	98	100	1 (86)	2 (100)	9 (100)		
$PM_{10} > 25$	69	99	100	8	21	66	0 (3)	0 (24)	1 (100)		
$PM_{10} > 30$	5	10	20	0	1	2	0	0	0 (0.1)		
$PM_{10} > 40$	0	0	0	0	0	0	0	0	0		
$PM_{10} > 50$	0	0	0	0	0	0	0	0	0		

8. Discussion

The comparison of ADMS-Urban with pollutant concentrations measured at the London AURN sites in 1999 has confirmed the generally good performance of the model with the annual mean values of NO₂ (overall fractional bias 0.02) and PM₁₀ (overall fractional bias 0.048) being especially well predicted. The high percentile (peak) values of NO_x and NO₂ show some tendency to overprediction; the particular meteorological situations causing this will be the subject of further investigation.

The sensitivity study showed the sensitivity to different model inputs: one of the greatest sensitivities is to the choice of meteorological site with, for instance, the overall mean of NO₂ being 6% lower if London Weather Centre data was used rather than Heathrow. Adjusting the initial grid source height, minimum Monin Obukhov length or surface roughness within a realistic range had little impact on concentration so we can be sure that these parameters are set at reasonable values which apply equally well to future projections of concentrations. Thus given accurate emission predictions the model will calculate future concentrations to reasonable accuracy. The overall fractional biases of annual mean NO₂ and PM₁₀, which are not very sensitive to the meteorological year, are likely to be no more than about 5%, although individual sites may show greater error. This results in limited uncertainty in the extent of exceedences of the NO₂ annual mean standard, but a far greater impact on road segments exceeding the London 2010 PM₁₀ standard (23 μ g/m³) in 2004. High percentiles can be subject to greater error and uncertainty due to complex meteorological effects and chemical processes.

9. Acknowledgements

This report was prepared under contract Number EPG 1/3/176 for DEFRA, National Assembly for Wales, The Scottish Executive, and the Department of the Environment, Northern Ireland.

10. References

TOPIC REPORTS

Blair, J.W., Johnson, K.L., Carruthers, D.J. (2003) Modelling Air Quality for London using ADMS-Urban, Cambridge Environmental Research Consultants **TR-0314**

Carruthers, D.J., Blair, J.W., Johnson, K.L. (2003) Comparison of ADMS-Urban, NETCEN and ERG Air Quality Predictions for London, Cambridge Environmental Research Consultants **TR-0232**

ADMS

Validation of ADMS-Urban and ADMS-Roads Against M4 and M25 Motorway Data, http://www.cerc.co.uk/software/publications.htm

Carruthers, D.J., Edmunds, H.A., Lester, A.E., McHugh, C.A. and Singles, R.J. (1998) Use and Validation of ADMS-Urban in contrasting Urban and Industrial Locations. *Proc.* 5th Int. Conf. Of Harmonisation Within Dispersion Models for Regulatory Purposes, 429-436. Available as a special issue of the International Journal of Environment and Pollution (2000) 14, Nos. 1-6

Carruthers, D.C., Holroyd, R.J., Hunt, J.C.R., Weng, W.S., Robins, A.G., Apsley, D.D., Thompson, D.J. and Smith, F.B. (1994) UK-ADMS: A new approach to modelling dispersion in the earth's atmospheric boundary layer. *Journal of Wind Engineering and Industrial Aerodynamics* **52**, 139-153. Elsevier Science B.V.

ADMS 3 Technical Specification (2000) Cambridge Environmental Research Consultants, http://www.cerc.co.uk/software/publications.htm

Hanna S.R., Egan B.A., Purdum J. and Wagler J. (1999) Evaluation of the ADMS, AERMOD and ISC3 Models with the Optex, Duke Forest, Kincaid, Indianapolis and Lovett Field Data Sets. *Proc. of Rouen Conference 11-14 October 1999*. Available as a special issue of the *International Journal of Environment and Pollution* (2001) **16**, Nos. 1-6

Azzi, M., Johnson, G. and Cope, M.E. (1992) An Introduction to the Generic Reaction Set Photochemical Smog Mechanism. In *Proceedings of the 11th International Conference of the Clean Air Society of Australia and New Zealand* (Brisbane, Australia, July 1992) (eds. P. Best, N. Bofinger, D. Cliff) **2**, 451-462

Venkatram, A., Karamchandani, P., Pai, P. and Goldstein, R. (1994) The Development and Application of a Simplified Ozone Modelling System (SOMS), *Atmospheric Environment* **28**, 3665-3678

Carruthers, D.J., Singles, R.J., Nixon, S.G., Ellis, K.L., Pendrey, M., Harwood, J. (1999) Modelling Air Quality in Central London. Cambridge Environmental Research Consultants **FM-0372**

VALIDATION METHODS

S.R. Hanna & R.J. Paine (1989) Hybrid Plume Dispersion Model (HPDM) development and evaluation. *J. Appl. Meteorol.*, **28**, 206-224

American Society for Testing of Materials (ASTM) (December 2000) Standard Guide for Statistical Evaluation of Air Dispersion Model Performance, **ID 6589**

Carruthers, D.J., Edmunds, H.A., Bennet, M., Woods, P.T., Milton, M.J.T., Robinson, R., Underwood, B.Y., Franklin, C.J., Timmis, R. (1997) Validation of the ADMS Dispersion Model and Assessment of its Performance Relative to R-91 and ISC using Archived LIDAR Data. *International Journal of Environment and Pollution* **8**, Nos. 3-6, 264-278

Oleson, H.R. (1995) Datasets and Protocol for Model Validation. *International Journal of Environment and Pollution* **5**, Nos. 4-6, 693-701

