UK Spatial Emissions Methodology
A report of the National Atmospheric Emission Inventory 2018

Prepared by Ricardo Energy & Environment for Department for Business, Energy and Industrial Strategy; Department for Environment, Food and Rural Affairs; The Scottish Government; Welsh Government; Department of Agriculture, Environment and Rural Affairs for Northern Ireland
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADF</td>
<td>Annual Average Daily Flow</td>
</tr>
<tr>
<td>ANPR</td>
<td>Automatic Number Plate Recognition</td>
</tr>
<tr>
<td>BEIS</td>
<td>Department for Business, Energy and Industrial Strategy</td>
</tr>
<tr>
<td>BRES</td>
<td>Business Register and Employment Survey</td>
</tr>
<tr>
<td>BSOG</td>
<td>Bus Service Operators Grant system</td>
</tr>
<tr>
<td>CEH</td>
<td>Centre for Ecology & Hydrology (now called UK CEH)</td>
</tr>
<tr>
<td>CLRTAP</td>
<td>Convention on Long-range Transboundary Air Pollution</td>
</tr>
<tr>
<td>DAERA</td>
<td>Department of Agriculture, Environment and Rural Affairs</td>
</tr>
<tr>
<td>DUKES</td>
<td>Digest of UK Energy Statistics</td>
</tr>
<tr>
<td>Defra</td>
<td>Department for Environment, Food and Rural Affairs</td>
</tr>
<tr>
<td>DfI</td>
<td>Department for Infrastructure</td>
</tr>
<tr>
<td>DfT</td>
<td>Department for Transport</td>
</tr>
<tr>
<td>DVLA</td>
<td>Driver and Vehicle Licensing Agency</td>
</tr>
<tr>
<td>E-PRTR</td>
<td>European Pollutant Release and Transfer Register</td>
</tr>
<tr>
<td>EA</td>
<td>Environment Agency</td>
</tr>
<tr>
<td>ECUK</td>
<td>Energy consumption in the UK</td>
</tr>
<tr>
<td>EEMS</td>
<td>Environmental and Emissions Monitoring System</td>
</tr>
<tr>
<td>EMEP</td>
<td>European Monitoring and Evaluation Programme</td>
</tr>
<tr>
<td>ETS</td>
<td>Emissions Trading System</td>
</tr>
<tr>
<td>GHGs</td>
<td>Greenhouse Gases</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information Systems</td>
</tr>
<tr>
<td>GNFR</td>
<td>Gridded Nomenclature for Reporting</td>
</tr>
<tr>
<td>HGVs</td>
<td>Heavy goods vehicles</td>
</tr>
<tr>
<td>IDBR</td>
<td>Inter-Departmental Business Register</td>
</tr>
<tr>
<td>IGER</td>
<td>Institute of Grassland and Environmental Research</td>
</tr>
<tr>
<td>IPC</td>
<td>Integrated Pollution Control</td>
</tr>
<tr>
<td>IPPC</td>
<td>Integrated Pollution Prevention and Control</td>
</tr>
<tr>
<td>LA</td>
<td>Local Authority</td>
</tr>
<tr>
<td>LAPC/APC</td>
<td>Local Authority Pollution Control/Air Pollution Control</td>
</tr>
<tr>
<td>LGVs</td>
<td>Light goods vehicles</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquid Petroleum Gas</td>
</tr>
<tr>
<td>LSOA</td>
<td>Lower Layer Super Output Area</td>
</tr>
<tr>
<td>MAAQ</td>
<td>Defra’s Modelling of Ambient Air Quality</td>
</tr>
<tr>
<td>MCGA</td>
<td>Maritime and Coastguard Agency</td>
</tr>
<tr>
<td>MSOA</td>
<td>Middle Layer Super Output Area</td>
</tr>
<tr>
<td>MSW</td>
<td>Municipal Solid Waste</td>
</tr>
<tr>
<td>NAEI</td>
<td>National Atmospheric Emissions Inventory</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NECR</td>
<td>National Emissions Ceiling Regulations</td>
</tr>
<tr>
<td>NFR</td>
<td>Nomenclature for Reporting</td>
</tr>
<tr>
<td>NIPI</td>
<td>Northern Ireland Pollution Inventory</td>
</tr>
<tr>
<td>NISRA</td>
<td>Northern Ireland Statistics and Research Agency</td>
</tr>
<tr>
<td>NMVOC</td>
<td>Non-Methane Volatile Organic Compounds</td>
</tr>
<tr>
<td>NOx</td>
<td>Nitrogen Oxides</td>
</tr>
<tr>
<td>NRS</td>
<td>National Records of Scotland</td>
</tr>
<tr>
<td>NRW</td>
<td>Natural Resources Wales</td>
</tr>
<tr>
<td>ONS</td>
<td>Office for National Statistics</td>
</tr>
<tr>
<td>OS</td>
<td>Ordnance Survey</td>
</tr>
<tr>
<td>OSNI</td>
<td>Ordnance Survey of Northern Ireland</td>
</tr>
<tr>
<td>PCM</td>
<td>Pollution Climate Mapping</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>SECA</td>
<td>Sulphur Emission Control Area</td>
</tr>
<tr>
<td>SEPA</td>
<td>Scottish Environment Protection Agency</td>
</tr>
<tr>
<td>SIC</td>
<td>Standard Industrial Classification</td>
</tr>
<tr>
<td>SMMT</td>
<td>Society of Motor Manufacturers & Traders</td>
</tr>
<tr>
<td>SNAP</td>
<td>Selected Nomenclature for reporting of Air Pollutants</td>
</tr>
<tr>
<td>SPRI</td>
<td>Scottish Pollutant Release Inventory</td>
</tr>
<tr>
<td>TfL</td>
<td>Transport for London</td>
</tr>
<tr>
<td>TRL</td>
<td>Transport Research Laboratory</td>
</tr>
<tr>
<td>UKPIA</td>
<td>UK Petroleum Industries Association</td>
</tr>
<tr>
<td>UNECE</td>
<td>United Nations Economic Commission for Europe</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>VMK</td>
<td>Vehicle kilometres</td>
</tr>
<tr>
<td>WEI</td>
<td>Welsh Emission Inventory</td>
</tr>
</tbody>
</table>
Executive summary

This report describes the methods used to map emissions in the National Atmospheric Emissions Inventory (NAEI). The maps provide spatially resolved modelled estimates of emissions compiled at 1x1 km resolution for each sector. One set of maps is produced for the most recent inventory year – as the inventory is reported two years in arrears (N-2), maps for 2018 have been produced this year. The mapped emissions data are made freely available on the NAEI web site at:

https://naei.beis.gov.uk/data/mapping

The geographical distribution of emissions across the UK is built up from several data sources and methods that are individually tailored to each sector. For large industrial and commercial sources, emissions are compiled based on data from a variety of official UK regulatory sources. For diffuse emission sources, distribution maps are generated using appropriate surrogate statistics that indirectly indicate the spatial distribution of emissions for each sector. The method used for each source sector varies according to the data available.

Emission maps are a crucial evidence base supporting a variety of Government policy support work at the national level. In particular, the maps are used as input into a programme of air pollution modelling studies. They also provide a spatial overview of emissions and are used to compile, and report gridded emissions to the United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (CLRTAP). Local area statistics are compiled from the maps and related data as well. For example, carbon dioxide emissions from fuel use at the Local Authority level have been produced for Defra and BEIS since 2005 using data from the NAEI’s mapping work. As of March 2008, these datasets were designated as National Statistics. In addition, the emission maps provide an illustrative and intuitive way for engaging with non-technical audiences who may wish to find out about emissions in their area.

Uncertainty analyses have been undertaken to consider the accuracy of the emission maps for some of the major air quality pollutants and greenhouse gases. Quality ratings have been used for this purpose. The pollutants with the highest quality ratings have a large proportion of their emissions from point sources, whereas pollutants with a greater proportion of their emissions from area sources have lower quality ratings.

The distribution of emissions presented in the NAEI maps has been verified for key pollutants which are used in UK scale air quality modelling. The results for NO\textsubscript{x} show good agreement between the spatial pattern of emissions from area sources and background ambient air concentrations recorded at automatic air quality monitoring sites.
Table of contents

1 **Introduction** .. 1
1.1 Emission mapping scope and purpose ... 1
1.2 Annual cycle of map compilation ... 3

2 **National Inventory Compilation** ... 4

3 **Methods for calculating emission distributions** ... 9
3.1 Industrial and commercial sources ... 9
3.2 Other industrial, commercial and public sector consumers ... 14
3.3 Road transport .. 16
3.3.1 Emission factors and fuel consumption factors .. 16
3.3.2 Road transport mapping methodology .. 17
3.3.3 Other road transport emissions ... 25
3.4 Domestic .. 25
3.4.1 Natural gas .. 25
3.4.2 Oil and solid fuels .. 25
3.5 Agriculture ... 29
3.6 Rail ... 29
3.7 Shipping .. 30
3.8 Inland waterways .. 34
3.9 Aircraft ... 35
3.10 Industrial off-road .. 36
3.11 Accidental fires and small-scale waste burning ... 36
3.12 Landfill sites .. 37
3.13 Offshore oil and gas .. 38
3.14 Other sectors .. 38

4 **Emission maps and data products** ... 39
4.1 Compilation of maps .. 39

5 **Uncertainties and verification** .. 43
5.1 Estimating uncertainty .. 43
5.2 Verification .. 48

6 **References** ... 50

Appendix 1 Bar Charts of UK Emissions split by UNECE Source Sector 51
1 Introduction

The UK National Atmospheric Emission Inventory (NAEI) and Greenhouse Gas Inventory (GHGI) are compiled by Ricardo Energy & Environment on behalf of the Department for Business, Energy and Industrial Strategy (BEIS), the Department for Environment Food and Rural Affairs (Defra), the Scottish Government, the Welsh Government, and the Department of Agriculture, Environment and Rural Affairs (DAERA) for Northern Ireland. This report describes the methodology used to compile spatially disaggregated emissions maps at a 1x1km grid resolution\(^1\) under the NAEI system.

The NAEI is the reference for air emissions in the UK and provides annual estimates for a wide range of important pollutants including air quality pollutants, greenhouse gases, pollutants contributing to acid deposition and photochemical pollution, persistent organic pollutants and other toxic pollutants such as heavy metals. A spatially disaggregated inventory is produced each year using the latest version of the national inventory.

A series of reports describing the methods used for calculating national total emission estimates under the NAEI and other outputs of the inventory system are published annually on the NAEI website at naei.beis.gov.uk/reports. These include the Informative Inventory Report (IIR) and Greenhouse Gas National Inventory Report (NIR), which present detailed information on the methodologies, emission estimates and trends for air quality pollutants and greenhouse gas emissions, respectively.

1.1 Emission mapping scope and purpose

Emission maps are routinely produced within the NAEI for the 27 pollutants\(^2\), listed below.

<table>
<thead>
<tr>
<th>Table 1.1 Pollutants mapped in the NAEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-butadiene</td>
</tr>
<tr>
<td>Benzene</td>
</tr>
<tr>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>Carbon dioxide (CO(_2))</td>
</tr>
<tr>
<td>Particulate Matter (PM({10}), PM({2.5}), PM({1}) & PM({0.1}))</td>
</tr>
<tr>
<td>Nitrogen Oxides (NO(_x))</td>
</tr>
<tr>
<td>Non-Methane Volatile Organic Compounds</td>
</tr>
<tr>
<td>Sulphur dioxide (SO(_2))</td>
</tr>
<tr>
<td>Ammonia(^1)</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
</tr>
<tr>
<td>Dioxins</td>
</tr>
<tr>
<td>Hydrogen chloride</td>
</tr>
</tbody>
</table>

The maps provide modelled estimates of the distribution of emission at a 1x1km resolution\(^1\) and are aggregated to UNECE sectors using the Selected Nomenclature for reporting of Air Pollutants (SNAP). The SNAP reporting sectors used are shown in Table 1.2 below. Data for large point sources are reported separately.

\(^1\) Mapped outputs for ammonia (NH\(_3\)), methane (CH\(_4\)) and nitrous oxide (N\(_2\)O) are produced under the same framework, but some sources are limited to 5x5 km resolution due to non-disclosure constraints.

\(^2\) 23 pollutants plus 4 particulate matter size fractions.
Table 1.2 UNECE Emissions Sectors Classification

<table>
<thead>
<tr>
<th>UNECE Sector Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Combustion in energy production and transfer</td>
</tr>
<tr>
<td>2</td>
<td>Combustion in commercial, institutions, residential and agricultural sectors</td>
</tr>
<tr>
<td>3</td>
<td>Combustion in industry</td>
</tr>
<tr>
<td>4</td>
<td>Production process</td>
</tr>
<tr>
<td>5</td>
<td>Extraction / distribution of fossil fuels</td>
</tr>
<tr>
<td>6</td>
<td>Solvent use</td>
</tr>
<tr>
<td>7</td>
<td>Road transport</td>
</tr>
<tr>
<td>8</td>
<td>Other transport and machinery</td>
</tr>
<tr>
<td>9</td>
<td>Waste treatment and disposal</td>
</tr>
<tr>
<td>10</td>
<td>Agricultural, forests and land use change</td>
</tr>
<tr>
<td>11</td>
<td>Other sources and sinks</td>
</tr>
</tbody>
</table>

Mapped emissions are made freely available in ASCII file format on the NAEI website at naei.beis.gov.uk/data/map-uk-das. The maps are also available through an online interactive GIS tool at naei.beis.gov.uk/emissionsapp. Both formats provide a valuable resource for user groups interested in local air quality and greenhouse gas emissions:

- The maps are frequently used as a starting point in the compilation of local emission inventories, which may then be used to assess the status of current and future air quality;
- Emission estimates for point sources and emissions arising from the surrounding area are used in modelling studies as part of Environmental Impact Assessments.

The emission maps provide an important evidence base that is used to support a variety of policies at UK and Devolved Administration (DA) Government scales. In particular, spatially disaggregated emission estimates (1x1km) and road link-specific emissions information from the NAEI are used annually to underpin Defra's modelled air quality data. These models are incorporated into the UK’s national air quality compliance assessments that are reported to the Commission under European Directives &.

They are also used to compile and report on emissions as part of the UK’s commitment to the UNECE Convention on Long-range Transboundary Air Pollution (CLRTAP). Under this reporting convention UK emissions are aggregated to the prescribed nomenclature for reporting sectors (NFR and GNFR sectors) and mapped to a 0.1° x 0.1° Long/Lat EMEP Grid spatial resolution in a geographic coordinate system (WGS84). The last submission was in May 2017 and these datasets are available through the WebDab emission database.

Local area statistics are also compiled from the maps and related data e.g. the Local Authority data on carbon dioxide emissions and fuel use which have been produced for Defra, BEIS and DA’s since the 2005 release. These datasets were classified as National Statistics subject to implementing a small number of requirements across the range of BEIS statistics (UK Statistics Authority, 2009).

3 Mapped outputs for ammonia (NH₃), methane (CH₄) and nitrous oxide (N₂O) are produced under the same framework, but some sources are limited to 5x5 km resolution due to non-disclosure constraints.

4 http://uk-air.defra.gov.uk/data/modelling-data

7 http://www.ceip.at/webdab-emission-database/

9 https://www.gov.uk/government/collections/sub-national-consumption-of-other-fuels
1.2 Annual cycle of map compilation

The NAEI is compiled two years in arrears on an annual basis. Each year the full inventory time-series (1990 – latest inventory year) is recalculated to take account of improved data inputs and any advances in compilation methods. Updating the full time-series is an important process as it ensures that the entire dataset is calculated using the most current methodology. National totals and temporal trends are reported to the European Commission (under systems supporting the National Emission Ceiling Directive10 and the European Union Monitoring Mechanism), UNECE, UNFCCC and other international commitments.

Emissions maps are routinely compiled for only the latest year in the NAEI time-series. Hence, in general, there is no consistent time-series in spatially disaggregated emissions maps11. However, since 2006, a time-series relative to a 2005 base year has been calculated for CO\textsubscript{2} end-user emission maps and sub-national energy consumption estimates. These maps and datasets were developed to support national policy on energy consumption and carbon emissions on behalf of BEIS. There is a commitment in future years to back-calculate the emissions maps for end-user CO\textsubscript{2} and fuel use to take into account improvements in mapping methodology and to ensure that a comparable time-series starting in 2005 is always maintained.

Figure 1-1 The 2018 NAEI mapping cycle

The maps are compiled after the inventory is finalised in March each year. This annual cycle of activity is represented schematically in Figure 1-1.

10 This Directive has been transposed into UK as National Emissions Ceiling Regulations (NECR)

11 Archived emissions data are available here: \url{https://naei.beis.gov.uk/data/mapping-archive}
2 National Inventory Compilation

The NAEI compiles emissions for several individual sectors producing a detailed and accurate estimate of emissions across the UK. For each sector a national total estimate is produced from a combination of emissions defined by reported activity data and emission estimates based on modelling. For example, minor road traffic emissions are modelled from regional flow and fleet mix data, while emissions from commercial & public sectors described by an employment-based energy consumption model adjusted by recorded levels of gas consumption.

The NAEI obtains most of its data on fuel consumption from the Digest of UK Energy Statistics (DUKES). National totals based on these data are further refined for the industrial and energy generation sectors taking into account other more detailed data from the regulators of industrial processes: the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), Natural Resources Wales (NRW) and the Department of Agriculture, Environment and Rural Affairs Northern Ireland (DAERA). Data from the returns under the greenhouse gas Emissions Trading System (ETS) are also used.

Emission estimates are calculated by applying an emission factor to an appropriate activity statistic:

\[
\text{Emission} = \text{Emission Factor} \times \text{Activity Data}
\]

An emission factor is defined as the average emission rate of a given pollutant for a given source, relative to units of activity. These are generally derived from: measurements made on various sources representative of an emission sector; the concentrations of elements in fuels burnt – represented in an emission factor; or, stoichiometric or empirical relationships between emissions and specific activities. Examples of emission factors include the amount of NO\(_x\) emitted from a car per kilometre it travels and the amount of SO\(_x\) emitted from a power station per tonne of coal burned.

Activity statistics are obtained from Government statistical sources, such as DUKES\(^\text{12}\) and Transport Statistics Great Britain\(^\text{13}\) alongside those from organisations such as trade associations and research institutes. For example, the UK Petroleum Industries Association (UKPIA) provides data on the sulphur content of fuels, and the Institute of Grassland and Environmental Research (IGER) provides data on livestock numbers and fertiliser usage.

Emissions of NO\(_x\) in 2018 for the NAEI source sectors is presented in Figure 2-1, and a map of the total NO\(_x\) emissions is shown in Figure 2-4. Emission estimates of NO\(_x\) are in fact compiled in considerably more detail than this. The NO\(_x\) inventory will be used throughout this report as an aide to illustrate the mapping methods used.

Figure 2-2 and Figure 2-3 illustrate how the relative contribution of emissions from different sectors varies by pollutant. The UK Informative Inventory Report (Richmond, et al., 2020) and Greenhouse Gas Inventory Report (Brown, et al., 2020), provide details of emissions by sector at a national level.

Figure 2-4 shows the spatial distribution of UK total NO\(_x\) emissions in 2018. As well as emissions from sources on mainland UK, emissions from shipping routes are also visible.

\(^{13}\) https://www.gov.uk/government/statistics/transport-statistics-great-britain-2018
Figure 2-1 NOx Emissions in 2018 by UNECE Source Sector as shown on the NAEI 1x1km maps

- Solvent use (0.01%)
- Extraction / Distribution of fossil fuels (0.02%)
- Production processes (0.19%)
- Other sources and sinks (0.22%)
- Waste Treatment and disposal (0.43%)

% of total emissions

- Agricultural, forests and landuse change (3.34%)
- Combustion in commercial, institutions, residential and agricultural sectors (8.03%)
- Combustion in industry (16.17%)
- Combustion in energy production and transfer (18.72%)
- Other transport and machinery (20.51%)
- Road transport (32.36%)

14 Includes emissions from shipping activity outside the UK territory, but within the extent of the emission maps as published. These emissions are not included in the national totals.
Figure 2-2 PM$_{10}$ Emissions in 2018 by UNECE Source Sector as shown on the NAEI 1x1km maps15

- Production processes (27.85%)
- Combustion in commercial, institutions, residential and agricultural sectors (28.00%)
- Combustion in industry (12.22%)
- Road transport (10.62%)
- Agricultural, forests and landuse change (9.79%)
- Other transport and machinery (4.47%)
- Other sources and sinks (1.08%)
- Solvent use (1.52%)
- Waste Treatment and disposal (1.98%)
- Extraction / Distribution of fossil fuels (0.07%)

15 Includes emissions from shipping activity outside the UK territory, but within the extent of the emission maps as published. These emissions are not included in the national totals.
Figure 2-3 CO₂ Emissions in 2018 by UNECE Source Sector as shown on the NAEI 1x1km maps16

\begin{itemize}
 \item Solvent use (0.01%)
 \item Extraction / Distribution of fossil fuels (0.16%)
 \item Other sources and sinks (0.19%)
 \item Waste Treatment and disposal (0.99%)
 \item Production processes (2.47%)
 \item Other transport and machinery (5.86%)
 \item Combustion in industry (13.35%)
 \item Combustion in commercial, institutions, residential and agricultural sectors (22.69%)
 \item Combustion in energy production and transfer (25.06%)
 \item Road transport (29.22%)
\end{itemize}

16 Includes emissions from shipping activity outside the UK territory, but within the extent of the emission maps as published. These emissions are not included in the national totals.
Figure 2-4 UK total NO\textsubscript{x} emissions in 2018
3 Methods for calculating emission distributions

A spatial characterisation of emission distributions across the UK is built up from several component distributions for each NAEI emission sector. These individual sectoral distributions are developed using statistics appropriate to each sector. For large industrial ‘point’ sources, emissions are compiled from detailed official sources prepared by the EA, SEPA, NRW, DAERA and Local Authorities. These enable both the geographic location and the magnitude of the emissions to be characterised. For other smaller and more widely distributed sources, known as ‘area’ sources, less detailed information on the location and magnitude of emissions is available. For these sources, a map of the distribution of emissions is generated using appropriate surrogate statistics at a sector level. The method used for each source sector varies according to the data available. Table 3.1 presents the types of mapping distributions used for each of the UNECE sectors (described in Table 1.2) within the NAEI. The mapping methods used to develop these distributions are explained in the following sections.

Table 3.1 Methods used to map emissions in each of the 11 UNECE emission sectors

<table>
<thead>
<tr>
<th>Source sector and method</th>
<th>Report Section</th>
<th>UNECE Emission Sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Accidental fires</td>
<td>Section 3.11 (36)</td>
<td>✓</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Section 3.5 (p.29)</td>
<td>✓</td>
</tr>
<tr>
<td>Airports</td>
<td>Section 3.9 (p.35)</td>
<td>✓</td>
</tr>
<tr>
<td>Domestic</td>
<td>Section 3.4 (p.25)</td>
<td>✓</td>
</tr>
<tr>
<td>IDBR(^{18}) agriculture</td>
<td>Section 3.2 (p.14)</td>
<td>✓</td>
</tr>
<tr>
<td>IDBR(^{16}) commercial & public</td>
<td>Section 3.2 (p.14)</td>
<td>✓</td>
</tr>
<tr>
<td>IDBR(^{16}) employment</td>
<td>Section 3.2 (p.14)</td>
<td>✓</td>
</tr>
<tr>
<td>IDBR(^{16}) industry</td>
<td>Section 3.2 (p.14)</td>
<td>✓</td>
</tr>
<tr>
<td>Landfill</td>
<td>Section 3.12 (p.37)</td>
<td></td>
</tr>
<tr>
<td>Offshore</td>
<td>Section 3.13 (p.38)</td>
<td>✓</td>
</tr>
<tr>
<td>Other</td>
<td>Section 3.14 (p.38)</td>
<td>✓</td>
</tr>
<tr>
<td>Point Sources</td>
<td>Section 3.1 (p.9)</td>
<td>✓</td>
</tr>
<tr>
<td>Population</td>
<td>Multiple Sections</td>
<td>✓</td>
</tr>
<tr>
<td>Rail</td>
<td>Section 3.6 (p.29)</td>
<td></td>
</tr>
<tr>
<td>Road transport</td>
<td>Section 3.3 (p.16)</td>
<td>✓</td>
</tr>
<tr>
<td>Shipping</td>
<td>Section 3.7 (p.30)</td>
<td>✓</td>
</tr>
</tbody>
</table>

3.1 Industrial and commercial sources

The NAEI receives detailed data on individual point sources in the industrial and commercial sector. A point source is an emission source at a known location, which has grid references and therefore it can be mapped directly; see illustrative example for London area Figure 3-1. Point sources across the UK may be either collectively responsible for the total emission for that sector (such as coal-fired power stations where the sector is made up solely of large operational facilities for which emission reporting is mandatory) or in part (such as combustion in industry, for which only the larger combustion plants within the sector are required to report emissions). In the latter case, the residual emission (i.e. the portion of the national total emission not released by installations represented by point sources) is mapped as an area source.

\(^{17}\) SNAP https://www.ceip.at/fileadmin/inhalte/ceip/00_pdf_other/nfr09_snap_grfr.pdf
\(^{18}\) IDBR Inter-Departmental Business Register
Figure 3-1 Illustration of industrial and commercial NAEI point sources in the London area
Point source emissions are compiled using a variety of different data sources and techniques. For convenience, the point source data can be divided into four groups:

1. Point sources regulated by the Environment Agency, Scottish Environment Protection Agency, Natural Resources Wales and the Northern Ireland Environment Agency, which are processes regulated under the Industrial Emissions Directive (IED). Data for these point sources are made available to the NAEI in the form of the Environment Agency’s Pollution Inventory (PI), the Scottish Environment Protection Agency’s Scottish Pollutant Release Inventory (SPRI), Natural Resources Wales’ Welsh Emissions Inventory (WEI) and the Northern Ireland Pollution Inventory (NIPI). Some additional information for some of these regulated processes is made available directly from process operators or trade associations;

2. Point sources registered with and trading emission credits under the EU-Emissions Trading System (EU ETS);

3. Point sources regulated under Local Authority Pollution Control/Air Pollution Control (LAPC/APC) in England and Wales, and in Scotland respectively, for which emissions data are estimated by Ricardo Energy & Environment based on site-specific data collected from regulators. Some sites that were once regulated under LAPC/APC are now covered by IED and for these, some emissions data are available via the European Pollutant Release and Transfer Register (E-PRTR);

4. Point sources where emissions are modelled by distributing national emission estimates over the known sources based on capacity or some other ‘surrogate’ statistic.

For emissions included in group 1 above, the most important sources of information are the various regulators’ inventories. The largest of these data sets is the PI, which includes emissions data for most pollutants covered by the NAEI. The PI covers processes regulated by the Environment Agency in England including those regulated under the IED. It does not include any data on processes regulated by local authorities. Reporting of emissions started in 1991 and is conducted annually. The completeness of reporting for the largest point sources is very high from the late 1990s onwards. From 1998 onwards, emission reporting is only required where emissions exceed a ‘reporting threshold’, e.g. for carbon monoxide the reporting threshold in 2003 was 100 tonnes and this means that some point sources do not have to report emissions. The reporting thresholds mean that data can be much more limited for sectors that consist mainly of medium rather than large industrial operations (for example industrial combustion) where it is far more likely that emissions will be below the reporting threshold.

The SPRI was first compiled for 2002 and from 2004 onwards it was compiled annually. As with the PI, process operators do not need to report emissions which are below reporting thresholds.

The WEI covers sites regulated under IED in Wales. These sites were once included in the PI, but responsibility for compiling the Welsh data now rests with Natural Resources Wales. Data for Welsh sites extends back to 1991 (in the WEI and in historical versions of the PI) and the same reporting thresholds apply as in the PI.

The NIPI contains annual data from 1999 onwards and the same reporting thresholds apply as in the PI.

The E-PRTR contains much data which replicates what is in the regulators’ inventories and so E-PRTR is not used as a source of additional information on processes regulated by the national regulators. It is, however, used as a source of information for a small number of processes regulated by local authorities (see below for further information).

The regulators’ inventories do not contain emissions data for every potential release from permitted processes. Operators do not need to report emissions if these do not exceed reporting thresholds. There are also instances where operators provide no information at all on pollutants that might be expected to be emitted i.e. they neither report an emission nor do they report that releases are below the threshold. The inventory agency therefore reviews the available data and identifies potential gaps, before generating emission estimates to fill these gaps (by extrapolation from data for other years and/or other processes). This gap-filling is done for the UK inventory, but the gap-filled point source data are then also used in the UK maps. These gap-filled point source data are likely to be considerably more uncertain than point source data based on emissions data in the regulators’ inventories, but they also tend to make only a relatively small contribution to UK emissions of each pollutant.
The regulators’ inventories provide much of the point source data used in the NAEI maps for NOx, SO2, CO, HCl, benzene, 1,3-butadiene, NMVOC, PM10, metals, and persistent organic pollutants. Sectors covered include power stations, refineries, chemicals manufacture, cement kilns, lime kilns, non-ferrous metals production, and large industrial combustion plants.

Of the process operators and trade associations providing emissions data directly to Ricardo Energy & Environment, notable examples are:

- Tata Steel Ltd & British Steel Ltd who have provided emissions data for integrated steelworks broken down into emissions from coke ovens, sinter plant, blast furnaces, basic oxygen furnaces, electric arc furnaces, flaring/losses, stockpiles and combustion plant. PI & WEI emissions data for the steelworks do not give this breakdown. Tata Steel have also previously supplied data for their electric arc steelmaking facility, however this is now operated by Liberty and so data have not been collected after 2016. The Tata Steel / British Steel data cover most of the pollutants mapped in the NAEI for steelworks;
- United Kingdom Petroleum Industry Association (UKPIA) supply NOx, SO2, CO, PM10 & NMVOC emissions data for fuel combustion and for non-combustion processes at crude oil refineries;
- Oil & Gas UK provide emissions data for offshore oil and gas exploration and production installations as well as various onshore installations linked to the production of oil and gas. These data are taken from the Environmental Emissions Monitoring System (EEMS) database which is compiled for Oil & Gas UK and BEIS. The data cover NOx, SO2, CO & NMVCs.

The use of carbon dioxide emissions data from the EU ETS requires careful cross-checking with the carbon dioxide emissions reported in the PI/SPRI/WEI/NIPI, and with data from trade associations and process operators. This need arises because there is considerable duplication of emissions in these various sources and it is vital that where emissions data are included from the EU ETS dataset, that data for the same installations are not also included from other sources.

The cross-checking requires a thorough understanding of how the various processes permitted under IED and reported in the PI/SPRI/WEI/NIPI relate to processes that are permitted under EU ETS. Identifying the same installation in each of the data sets is not always straightforward since operator names, site names and even site addresses and postcodes can differ for the same site in both sets of data. In the past, this led to some revision of data from one version of the maps to the next, but the NAEI team’s understanding of these relationships has improved to the point that further revisions are relatively unlikely.

Additionally, even where a given installation is present in both the EU ETS and other data sets, the exact scope of the emissions data may not be the same. For example, emissions data in the PI and other regulators’ inventories will include carbon dioxide from biofuels, whereas the EU ETS data will not. The PI will also include emissions from driers, furnaces and other plants where fuels are burnt to provide heat which is used within the combustion device. In many cases, the EU ETS data set will exclude the emissions from these types of plant prior to 2012 (EUETS phase II). As a result, there is a need to understand how the scope of each IED permit compares with the scope of each EU ETS permit. This is a major task which would require significant resources to do fully. As a proportionate interim measure, resources have been focussed on understanding the relative scope of permits for those installations which report very different carbon emissions in different data sets. Good progress has been made in understanding key differences; even so, fully understanding these is a work in progress.

One sector that is particularly complex is that of the terminals receiving crude oil and gas from the North Sea production installations. For these facilities, we have emissions data from the EU ETS, the PI & SPRI, and also from the EEMS database, compiled for UK Oil & Gas and BEIS. These datasets often contain very different emissions data for the same installation, and it is not always possible to identify a clear reason for this. Carbon dioxide point source emissions data for complex sources such as these are therefore subject to a high degree of uncertainty and are liable to be revised if new information becomes available.

The EU ETS data gives detailed information on the types of fuels burnt at each site. This is used to split emissions data for pollutants other than carbon dioxide that are available from the PI, SPRI, WEI and NIPI. The procedure involves generating a fuel consumption profile for each facility and year. Subsequently, a series of default emission factors, taken from the NAEI, is used to calculate a
Theoretical emission of each pollutant and fuel type. These theoretical emissions are then used to calculate an emissions profile for each facility, indicating the likely distribution of emissions between the different fuels burnt at that site. Finally, the emissions profile is combined with the emission data reported in the PI/SPRI/WEI/NIPI to give fuel-specific emission estimates.

Point source data for some processes regulated under LAPC/APC are based on information obtained from regulators. This was an important information stream for processes using solvents during the late 1990s and early 2000s, but this type of information has not been collected since, due to the resource-intensive nature of the data collection, both for the inventory agency and, potentially, for the regulators asked to provide such information. Data for a small number of solvent-using processes continues to be available via the E-PRTR, but for most sites, the points data are now based on historic reported data and therefore subject to considerable uncertainty.

Even given the comprehensive information compiled in the above registers and datasets, point source data are not available for all installations. For those sites with emissions below the reporting thresholds described above, or for most sites regulated by local authorities, the NAEI will not be able to collect any emissions data from the regulator. Furthermore, some industrial emission sources are not regulated. For most pollutants, the available data are likely to cover those sites and sectors that emit significant quantities: that is why the sites are regulated and emissions reported in the various data sets. In the case of NMVOC and, to a lesser extent, particulate matter, there are significant emissions from the LAPC/APC sites where emissions data are not generally available. For NMVOCs, there are also significant emissions from industrial processes which are not regulated under air pollution legislation (for example, emissions of ethanol and other NMVOCs from bakeries, breweries and the manufacture of malt whisky and other spirits). In these cases, ‘modelled’ point source data are generated using national emission factors and a ‘surrogate’ activity statistic. Examples of this approach are given below:

- Estimates of plant capacity, including estimates made by Ricardo Energy & Environment can be used to allocate the national emission estimate. This approach is, for example, used for bread bakeries where Ricardo Energy & Environment has estimated the capacity of each of about 70 large mechanised bakeries;
- Emission estimates for one pollutant can be used to disaggregate the national emission estimate of another pollutant. For example, emissions of PM_{10} from certain coating processes have been estimated by allocating the national total to sites based on their share of the national NMVOC emission;
- Assuming that plants which do not report emissions have similar rates of emission as plants within the same sector which do report emissions. In these cases, emissions are calculated by assuming that these sites will emit at the same rate as other sites where data exists, which are comparable in size and with similar abatement measures in place, where recorded;
- Emissions can be distributed using surrogate data other than capacity. For example, in the case of malt whisky distilleries, emissions of NMVOCs from distillation are distributed using capacity, except in cases where this is not known, where the number of stills is used as a measure of the scale of operations and therefore emissions;
- Assuming that all plants in a given sector have equal emissions. In a few cases where there are relatively low emissions per plant in a sector, and no activity data can be derived at site-level, emissions are assumed to be equal at all of the sites. This approach is used for only a small number of sources, for example animal rendering plants and animal feed manufacturers.

With the possible exception of using plant capacity as a surrogate, many of the approaches listed above will yield emission estimates which are subject to much higher uncertainties than the emissions reported by site operators in the PI/SPRI/NIPI or EU ETS etc. However, most of the emission estimates generated using these methods are, individually, relatively small and the generation of point source data by these means is judged better than mapping the emissions as area sources. This would mean mapping emissions across the whole of the UK using much less targeted surrogate data, such as employment data or population, which are likely to be poorly correlated to emissions.

The Local and Regional CO_{2} technical report (Turtle et al., 2020) describe in more detail the methodology used to calculate the emissions at point sources.
3.2 Other industrial, commercial and public sector consumers

As indicated above, the emissions at large point sources represent a substantial proportion of the total industrial and commercial fuel consumption. Subtracting these site-specific emissions from each NAEI sector total calculates a residual emission\(^\text{19}\), which is mapped as an ‘area source’. This residual emission is allocated to the UK grid using distribution maps for each sector derived from employment statistics. Each distribution map provides the percentage of the UK’s residual sector fuel consumption estimate to be allocated to each 1x1km.

The method used is described in a separate document - Employment based energy consumption mapping in the UK (Tsagatakis, 2018). The following data sets were used:

- Office of National Statistics Inter-Departmental Business Register (IDBR), which provides data on employment at business unit level by Standard Industrial Classification (SIC) code\(^\text{20}\);
- Energy Consumption in the UK (ECUK) data on industrial and service sector fuel usage\(^\text{21}\);
- Site-specific fuel consumption as described in Section 3.1. These are compiled from data for regulated processes reported in the EA Pollution Inventory, Scottish SPRI, DoE NI Inventory of Statutory Releases, by the EU-ETS and from other data obtained by the inventory
- Xoserve’s Off-Gas Postcode dataset\(^\text{22}\);
- Business Register and Employment Survey (BRES) annual employment estimates for the UK split by Region and Broad Industry Group (SIC2007)\(^\text{23}\).

The first step was to allocate NAEI point sources to SIC sector and to identify the relevant individual businesses at these locations in the IDBR employment database. This was to calculate the energy use for each sector, which is already accounted for by point sources, and therefore estimate the total residual energy that needs to be distributed using the employment data. This retained the level of detail across emissions subsectors required for the mapping, as the use of total energy by SIC codes would have resulted in a reduction in the quality of the final distribution.

The employment data by SIC codes in the IDBR database were matched with the BEIS energy consumption datasets to calculate total employment for each sector for which energy consumption data were available. Fuel intensity per employee was calculated for each sector. For commercial and public service sectors the employment data needed to be aggregated to match the level of aggregation of the energy data. In the case of industrial sectors, a comparable approach was used; where this energy intensity calculation was done at the level of 2-digit SIC codes. Energy consumption data were available for coal, gas oil, fuel oil and natural gas. These were combined to calculate industry specific fuel intensities for coal, oil and gas.

The IDBR employment data at local unit level were aggregated to 2-digit SIC codes at Local Authority resolution using postcodes and grid references provided as part of the database. The employment totals for each sector were then multiplied by the appropriate fuel intensity per employee values to make fuel use distributions across the UK. It has been assumed that fuel intensity for each sector is even across the sector. This is a simplification of reality but necessary because of a lack of more detailed estimates of fuel use.

The resulting fuel distributions have been refined using a subsequent set of modelling steps:

- Sites of employment corresponding to the locations of the highest emissions (as defined by the NAEI point source database) have been removed from the distributions. This is to prevent double counting of emissions at these locations (emissions are mapped as point sources).
- High-resolution gas consumption data at Middle Layer Super Output Area (MSOA) has been used to adjust the distribution of gas predicted by the employment and energy intensity data. An adjustment has also been applied in Northern Ireland based on local authority level gas consumption data.

\(^{19}\) Residual emission = national total – point source emission total

\(^{20}\) https://www.ons.gov.uk/aboutus/whatwedo/paidservices/interdepartmentalbusinessregisteridbr

\(^{21}\) https://www.gov.uk/government/statistics/energy-consumption-in-the-uk (Industrial and Services tables)

\(^{22}\) https://www.xoserve.com/media/2687/off-gas-postcodes-v2.xlsx

• Evidence of areas with natural gas availability, Xoserve’s Off-Gas Postcode dataset has been used to identify sites that are in or out of the natural gas grid.
• Based on expert knowledge of fuel use by industry and businesses the distributions of fuel oil and gas oil have been modified so that consumption is lower per employee in grid squares with Natural Gas availability using a weighting factor.
• The distribution of coal has been further limited to outside the locations of large urban areas.

Figure 3-2 shows the process to convert industrial & commercial fuel usage from individual employment sites into emissions.

Figure 3-2 Non-domestic gas use allocation process

1. Start non-domestic gas allocation process
2. Collate list of sites with ONS Employment statistics (IDBR)
3. Allocate non-domestic gas use to sites where known
4. Use employment data to estimate gas use to remaining non-domestic sites
5. Aggregate gas use by geographical area
6. Calibrate estimated non-domestic gas use for each site to match known use by area
7. Gas use by groups of industry in each 1x1km
8. End non-domestic gas allocation process
3.3 Road transport

Exhaust emissions from road vehicles and the related fuel consumption estimates are calculated within the NAETI using emission factors and activity data for each vehicle type. The emission factors are calculated based on the composition of the vehicle fleet (age profile and fuel mix), and together with fuel consumption are applied to detailed spatially resolved traffic movements. The vehicle fleet age profiles, Euro standard and fuel mix estimated within each of the Devolved Administrations are derived using Regional Vehicle Licensing Statistics (from the DVLA) and the DfT’s Automatic Number Plate Recognition (ANPR) database. Therefore, as the fleet mix varies by location, different emission factors are applied to different road types in the Devolved Administrations.

3.3.1 Emission factors and fuel consumption factors

Fuel consumption factors and emission factors combined with traffic data for 6 major classes of vehicles are used to estimate national fuel consumption and emissions estimates from passenger cars (conventional and hybrid), light goods vehicles (LGVs), rigid and articulated heavy goods vehicles (HGVs), buses/coaches and mopeds/motorcycles. The vehicle classifications are further sub-divided by fuel type (petrol or diesel) and the regulatory emission standard the vehicle or engine had to comply with when manufactured or first registered. The vehicle Euro emission standards apply to the pollutants NOx, PM, CO and hydrocarbons but not to CO2 or fuel consumption. Nevertheless, the Euro standards are a convenient way to represent the stages of improvement in vehicle or engine design that have led to improvements in fuel economy and are related to the age and composition profile of the fleet. For example, the proportion of pre-Euro 1 and Euro 1-4 vehicles in the national car fleet can be associated with the age of the car fleet (year of first registration).

Fuel consumption and emission factors are expressed in grams of fuel or emissions per kilometre driven respectively for each detailed vehicle class. The methodology combines traffic activity data (from DfT’s national traffic census) with fleet composition data and fuel consumption/emission factors. The vehicle fleet composition data are based on licensing statistics and evidence from Automatic Number Plate Recognition (ANPR) data from DfT; these provide an indication of the vehicle mix by engine size, vehicle size, age, engine and exhaust treatment technology, Euro emission standards, and fuel type as observed on different road types. Fuel consumption factors are based on a combination of published compilations of factors derived from vehicle emission test data from European sources and factors from industry on the fuel efficiency of cars sold in the UK. In the former case, representative samples of vehicles are tested over a range of drive cycles associated with different average speeds on different road conditions. There are many parameters that affect the amount of fuel a vehicle uses and average vehicle. Speed is one of them, so the NAETI uses functions that relate fuel consumption to average speed.

The emission and fuel consumption factors are taken from the EMEP/EEA Emissions Inventory Guidebook 201924 where they are expressed as functions related to average speed and are consistent with the factors in COPERT 5.3. COPERT 5 “Computer Programme to Calculate Emissions from Road Transport” is a model and database of vehicle emission factors developed on behalf of the European Environment Agency and is used widely by other Member States to calculate emissions from road transport. For fuel consumption, the approach includes a method for estimating emissions from passenger cars which applies a year-dependent ‘real-world’ correction to the average type-approval CO2 factor weighted by new car sales in the UK from 2005-2018. The new car average type-approval CO2 factors for cars in different engine size bands were provided by the Society of Motor Manufacturers and Traders25. The real-world uplift uses empirically-derived equations in the Guidebook that take account of average engine capacity and vehicle mass. The uplift is applied to the speed-related functions given in the Guidebook. For other vehicle types, the fuel consumption-speed curves provided in the Guidebook are used without a further uplift.

The emission maps are calculated from the speed-related emission factors multiplied by vehicle flows. The method for calculating these maps is described in the next section.

25 http://www.smmt.co.uk/
3.3.2 Road transport mapping methodology

The base map of the UK road network used for calculating hot exhaust road traffic emissions has been developed from a range of mapping datasets. The Ordnance Survey Open Roads (OSOR) dataset (see Figure 3-3) provides locations of all roads (motorways, A-roads, B-roads and unclassified roads) in Great Britain (GB). Prior to 2017 the Ordnance Survey’s Meridian 2 (OSM2) road network was used, but this has been superseded by OSOR and the NAEI has adopted this new OS product as part of the continual improvement of the mapping process. OSOR is more detailed and accurate than OSM2 and links to the definitive OS MasterMap Highways Network products. For Northern Ireland (NI) a dataset of roads was obtained from Ordnance Survey of Northern Ireland, part of Land & Property Services Northern Ireland.

Traffic flow data for major roads (A-roads and motorways) are available on a census count point basis for both GB26 and NI27. The data comprise counts of each type of vehicle as an Annual Average Daily Flow (AADF), aggregated up to annual flows by multiplying by 365. These AADF statistics take account of seasonal variation using ‘expansion factors’ applied to single day counts based on data from

26 http://www.dft.gov.uk/traffic-counts/
automatic counts for similar roads and vehicle types. These expansion factors are developed and applied by DfT directly to the released AADF statistics.

Differences between GB and NI datasets should be noted. The census count point coverage of roads in GB is considerably denser than that for NI. Additionally, in NI, some count points record total vehicles, rather than a split of different vehicle types. An average vehicle split has been applied to these records.

The NI traffic data provided by Northern Ireland’s Department from Infrastructure (DfI) for 2018 has a different vehicular classification from previous years. Specifically, the LGV class was omitted and the LGV count was merged with Car class. As a result, and in order to be consistent with the previous vehicular classification (as well as GB), historic traffic pattern data by road type and urban status, was utilised to generate a LGV-to-Car ratio.

In addition, the Department for Infrastructure (DfI) in Northern Ireland has provided a lower number of traffic count points than they did in previous years. From a total of 367 count points only 89 were updated with 2018 data. This has led to adopting a scaling factor using historic traffic counts for Northern Ireland. This enabled the scaling of 278 traffic points to fill in the gaps.

For NI, traffic counts were allocated according to the proximity of the point where the count was made and major roads with the same road number – i.e. each link has the nearest count point with the same road number assigned to it – using a computer script.

For GB, the OSOR network is more complex than the NI road network, and count point allocation required a different approach. Here, count points were allocated to a section of the major road network according to shared road number and spatial proximity to the stretch of road that each count point covers.

Figure 3-4). This was done by using a highly simplified, straight line, Department for Transport (DfT) representation of the start and end of each count points’ coverage (‘count point lines’). A series of computer-based processes were used to automatically perform this allocation. Where count point lines overlapped Local Authority boundaries, OSOR roads were split at that boundary and each split assigned to the relevant LA. Automated allocation was followed up with manual checking and verification.
Figure 3-4 Traffic flows are assigned to the road network (Ordnance Survey Open Roads) by selecting OSOR sections that fall between the start and end points of traffic census count point coverage (DfT road line)

The urban or rural classification of a section of OSOR road covered by a count point (here called a ‘count point road’) was determined through the following logic:

1. Count point roads that have at least two-thirds of their DfT defined length\(^{29}\) as urban: classify as urban.
2. Count point roads that have at least two-thirds of their DfT defined length\(^ {30}\) as rural: classify as rural.

Count point roads not captured by cases 1 or 2 were split at the urban boundary and further logic applied:

3. Count point roads intersecting the boundary once were split into two count points: one urban and one rural. Any new count point road of less than 100m was given the urban or rural classification of their counterpart and splits of less than 15% of the total count point road length were manually inspected for validity.
4. Count point roads intersecting urban areas more than twice were classed based on the majority urban or rural length of the whole road section.

Due to the variety of reasons that a road may cross a boundary twice, these were manually assessed and classified as urban or rural accordingly.

\(^{29}\) This length is provided directly by DfT and therefore further analysis is not necessary

\(^{30}\) This length is provided directly by DfT and therefore further analysis is not necessary
Urban areas for England and Wales are defined as built-up areas31 with a population of at least 10,000, or for Scotland32 a population of at least 3,000 (according to 2011 Census data).

Figure 3-5 shows the traffic flows that are assigned to the road links after count point allocation.

Figure 3-5 Traffic flows are assigned to the road links after count point allocation

Traffic flow data are not available on a link-by-link basis for the majority of minor roads. But where these data are available, they have been used to enhance the accuracy of the mapping. Minor road count points were allocated to minor roads from the OSOR dataset by using the 2016 OSM2-based allocation. These allocations were transferred by matching the spatial extent of OSM2 road sections to comparable OSOR road sections.

Traffic flows in the majority of minor roads have been modelled based on average regional flows and fleet mix (data from DfT) in a similar way to previous years. Regional average flows by vehicle type have been applied to each type of minor road – B and C roads or unclassified roads.

For Northern Ireland, vehicle-specific minor road flows have been calculated from data in the *Annual Road Traffic Estimates: Vehicle Kilometres Travelled in Northern Ireland*33 which provides information on vehicle kilometres travelled for vehicle types and by road types.

County-level vehicle kilometre estimates from DIT (unpublished) have been provided to ensure consistency between the NAEI and DIT modelling and have been used to correct at County level the estimates of vehicle kilometres in the NAEI mapping.

31 http://geoportal.statistics.gov.uk/datasets/built-up-areas-december-2011-boundaries-v2

32 https://www2.gov.scot/Topics/Statistics/About/Methodology/UrbanRuralClassification

The next step after mapping vehicle movements was to apply the emissions and fuel consumption factors discussed earlier. Each major road link was assigned an area type using the DfT definitions of urban area types shown in Table 3.2 and Figure 3-6 below. Within each one of the 10 area types vehicle speeds were assigned to different road types (built up and non-built up A-roads and motorways).

Figure 3-6 Road transport urban area type classification map
Table 3.2 Road transport urban area type classification

<table>
<thead>
<tr>
<th>Area Type ID</th>
<th>Description</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central London</td>
<td>N/A (Geographically defined)*</td>
</tr>
<tr>
<td>2</td>
<td>Inner London</td>
<td>N/A (Geographically defined)*</td>
</tr>
<tr>
<td>3</td>
<td>Outer London</td>
<td>N/A (Geographically defined)*</td>
</tr>
<tr>
<td>4</td>
<td>Inner Conurbations</td>
<td>N/A (Geographically defined)**</td>
</tr>
<tr>
<td>5</td>
<td>Outer Conurbations</td>
<td>N/A (Geographically defined)**</td>
</tr>
<tr>
<td>6</td>
<td>Urban Big</td>
<td>> 250,000</td>
</tr>
<tr>
<td>7</td>
<td>Urban Large</td>
<td>100,000 – 250,000</td>
</tr>
<tr>
<td>8</td>
<td>Urban Medium</td>
<td>25,000 – 100,00</td>
</tr>
<tr>
<td>9</td>
<td>Urban Small</td>
<td>10,000 – 25,000</td>
</tr>
<tr>
<td>10</td>
<td>Rural</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Unique areas, which are defined on a geographic basis by Transport for London (TfL).
** Conurbations include the Greater Manchester and West Midlands built-up areas.

Vehicle kilometres (VKM) estimates by vehicle type for each road link were multiplied by fuel consumption or emission factors taking into account the average speed on the road of concern and the vehicle and fuel type and the national fleet composition in terms of the mix of each Euro emission standard of vehicles on the road for the inventory year. These calculations were performed for each major road link in the road network, resulting in maps of fuel use by fuel type and emissions by pollutant. Each road link was then split into sections of 1 km grid squares which enabled the mapping of emissions and energy estimates (for example for London in Figure 3-7).

A similar calculation is performed for minor roads estimates using average speeds for different types of minor roads and applying the relevant fuel consumption factor for that road type to the VKM data modelled as described above. Calculations for minor roads are undertaken at a resolution of 1x1 km across the UK.
Figure 3-7 2018 NO\textsubscript{x} road transport emissions on major roads aggregated to 1x1 km resolution
3.3.3 Other road transport emissions

Cold start emissions are produced by vehicles before the engine has reached normal operating temperature. Estimates of the distance travelled by vehicles whilst operating under cold start conditions are available in the NAEI for cars by average trip length and trip type. Cold start conditions in Northern Ireland are assumed to have similar characteristics to those in Great Britain. These data enable estimates of the associated emissions to be determined at the UK level.

The trip types used in the mapping of cold start emissions are classified as ‘home to work’, ‘home to other locations’ and ‘work based’ trips. ‘Home to work’ related emissions were distributed across the UK using detailed population data from the 2011 census on whether people use their car as their method of transport to work. Emissions for trips from home to other locations were mapped using data on car ownership, once again collected from the 2011 census. Work based cold start emissions were mapped on a distribution of all employment across the UK. These were reconciled with the outputs from DfT’s TEMPRO model (DIT, 2013). Predicted population movements by mode of transport in the TEMPRO model were produced through reconciling the National Trip End Model (NTEM) version 6.2 (April 2011) datasets34, which contains a long-term travel response to demographic and economic trends within Wales, Scotland and the 9 regions of England. A comparable NTEM dataset representative of current socioeconomic conditions in Northern Ireland was recently commissioned by the Department for Regional Development and is expected to be included in future releases. The ratio of Northern Ireland to UK cold-start emissions, for each pollutant, was calculated from the NAEI road transport model. These emissions estimates are based on the COPERT III model for cold-starts (Ntziachristos & Samaras, 2000).

Evaporative emissions of benzene and NMVOC from petrol vehicles were distributed using a map of petrol fuel use on all roads derived using the method described in section 3.3.2 above. PM$_{10}$ and PM$_{2.5}$ emissions from brake and tyre wear and road abrasion were distributed using a 1x1 km resolution map of estimated total vehicle kilometres on major and minor roads.

There are two other small sources of emissions from road traffic included in the inventory - combustion of waste lubricants and emissions from Liquid Petroleum Gas (LPG) vehicles. Both sources were distributed using estimates of total vehicle kilometres calculated from the NAEI maps of traffic flows.

3.4 Domestic

3.4.1 Natural gas

Sub-national energy statistics were used to generate domestic gas use spatial distribution for England, Wales and Scotland. Gas consumption has been aggregated from the bottom-up gas meter point level to 1x1km resolution. For Northern Ireland, gas connections information for domestic properties was provided by SSE Airtricity35 and Firmus Energy36. Residential use of LPG is allocated in off gas grid output areas, where census returns gas central heating.

3.4.2 Oil and solid fuels

Domestic oil and solid fuel use distributions were created by spatially resolving detailed local information on central heating and house type data from the 2011 census with data from the BEIS National Household Model (NHM), which provides average household energy consumption estimates across the 13 regions of England, Wales and Scotland. Regions within England and Wales follow the regional classification scheme37, with Scottish regions aligned with the Met Office’s 3-tier regional climate

34 https://www.gov.uk/government/publications/tempro-downloads/tempro
35 http://www.airtricitygasni.com/at-home/
36 http://www.firmusenergy.co.uk/
(Northern, Eastern and Western) classification to represent the spatial shifts in climate38. The census data were combined with full-address matched dwelling locations from Ordnance Survey data to give a more accurate distribution of households at 1x1km resolution. The following data series were used in the domestic model:

1. **Ordnance Survey (OS) AddressBase products**
 a) **OS AddressBase Premium**
 The AddressBase data links any property address to its location on the map. It was created through matching the Royal Mail’s postal address file (PAF) to building locations contained in the OS Topography Layer, to provide precise coordinates for each of the 24.7 million residential properties in Great Britain.
 b) **Ordnance Survey of Northern Ireland (OSNI) Pointer**
 The Pointer address product is the most comprehensive and authoritative address database for Northern Ireland, containing location data for just under 740,000 residential address records. Each record adheres to the OS common address standard.

2. **2011 Census returns on dwelling type and central heating fuel types**
 a) **Office for National Statistics (ONS) – cross-tabulated records**39
 • Census table ‘CT0213’ provided 2011 estimates classifying all occupied households by type of central heating by dwelling type at the Lower Super Output Area (LSOA) level in England and Wales on census day (27th March 2011). A household’s accommodation is classified according to the presence and type of central heating if it is present in some or all rooms (whether used or not).
 • Output Area (OA) information of dwelling type (only) contained in census tables ‘KS401EW’ for the 10 regions of England and Wales allowed for a more spatially detailed analysis.40
 b) **National Records of Scotland (NRS)41 – cross-tabulated records**
 Census table ‘CT_0043_2011’ provided 2011 estimates classifying all occupied households by type of central heating by dwelling type at the Output Area (OA) level in Scotland on census day (27th March 2011). These data were provided to Ricardo Energy & Environment by NRS in June 2015.
 c) **Northern Ireland Statistics and Research Agency (NISRA) - cross-tabulated records**
 Census table ‘CT0084NI’ provided 2011 estimates classifying all occupied households by type of central heating by dwelling type at the Small Area (SA) level in Northern Ireland on census day (27th March 2011).42

3. **BEIS National Household Model (NHM) regional energy consumption estimates per household by house type by fuel type**
 Regional energy consumption estimates of a detailed build form/type (subsets of census dwelling type) and in the presence of central heating were created by BEIS on 31st March 2014 from the NHM scenario "GHG_Emissions_Data_Request" version 3. Coal and oil have been calibrated to DUKE; gas and electricity have been calibrated to metered readings.

4. **BEIS Residential Wood Survey**
 BEIS undertook a survey of residential wood use during 2015 and this provides estimate of wood users for 2014 at regional level as well as data on technology splits of these users, among other statistics. The Number of Wood Fuel users by Region from the summary results43 allowed additional assessment of the wood use mapping.

A summary of how these datasets were utilised in the process is given in Table 3.3.

38 http://www.metoffice.gov.uk/climate/uk/regional-climates
40 http://www.ons.gov.uk/ons/datasets-and-tables/index.html
41 http://www.nrscotland.gov.uk/
42 http://www.ninis2.nisra.gov.uk/public/Theme.aspx
43 https://www.gov.uk/government/publications/summary-results-of-the-domestic-wood-use-survey (Table 1.1)
Table 3.3 Description of methods using the above data series

<table>
<thead>
<tr>
<th>Task and data series used</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OS AddressBase Premium geographies were used to generate a spatially resolved database of ONS/NRS 2011 census dwelling types distributed within the Census output area boundaries by unique address level coordinates of residential structures within each of England, Wales and Scotland’s Output Areas (OA). For Northern Ireland, a fully standardised geo-referenced address layer was retrieved from the OSNI Pointer dataset and combined with NISRA 2011 census household type returns at the Small Area (SA) level. SAs on average contain 155 households a figure comparable to OA’s within England / Wales which on average contain 125 households.</td>
<td></td>
</tr>
<tr>
<td>2 For England & Wales, ONS cross-tabulated census data provided a breakdown of dwelling type (Detached, semi-detached, terraced, flat/other) by central heating characteristics (gas, electricity, oil, solid, and multiple) at the census Lower Layer Super Output Areas (LSOA). Fuel splits for a given dwelling type were then applied to OA central heating type counts, based on geographic nesting. NRS & NISRA data across Scotland and Northern Ireland provided a complete breakdown of dwelling type by central heating characteristics at the OA & SA level, respectively. As such, no additional data processing was required.</td>
<td></td>
</tr>
<tr>
<td>3 BEIS NHM Regional energy statistics by dwelling type and heating type were used to generate spatial distribution databases for domestic gas, oil and solid fuel consumption across England/Wales and Scotland. Households characterised as having a central heating system operating with multiple fuel types were assumed to have an even split of the gas, electricity and solid fuel central heating returns occurring in matching house types of that OA. The BEIS NHM is a domestic energy policy and analytical tool constructed from the national housing surveys (English Housing Survey and Scottish House Condition Survey) to characterise Great Britain’s housing stock. The Welsh housing stock model is derived from a reweighting of the English Housing Survey, with insufficient information available for the inclusion of Northern Ireland. Energy statistics for ‘Western Scotland’ were adopted by the NAEI as the most appropriate (with regard to building forms and climate) to represent the domestic energy factors within Northern Ireland.</td>
<td></td>
</tr>
<tr>
<td>4 Solid fuel use was assigned to solid fuel burnt in boilers and non-boiler appliances (such as open fireplaces, closed stoves). It was assumed that solid fuel activity for boilers was used in properties which, according to Census 2011, had Solid Fuel Central Heating. Solid fuel activity for non-boiler appliances was assumed to be used in houses and bungalows with No Central Heating. Supplementary heating from the same technologies was considered more likely to be located in houses and bungalows only. Apartments were excluded for solid fuel use to be in line with BEIS NHM assumptions on wood use. The number of supplementary heating users for wood was calibrated at Regional level by comparing the total wood user count (as derived from all the above assumptions) against the regional count from the BEIS Residential wood survey. Figure 3-8 presents a summary of how wood use was mapped. Emissions were mapped from the NAEI estimates for residential boiler and non-boiler technologies.</td>
<td></td>
</tr>
</tbody>
</table>

44 https://data.gov.uk/dataset/c481f2d3-91fc-4767-ae10-2efdf58996/lower-layer-super-output-areas-ls0as
Figure 3-8 Domestic wood use allocation process

START: Mapping Wood Use

Assign Primary and Supplementary Wood use to the different types of Central Heating

Geographical Constraint: Houses

Household count for Supplementary Heating from Closed Stoves or Open Fires

Geographical Constraint: No Central Heating & Houses

Household count for Primary Heating from Closed Stoves or Open Fires

Geographical Constraint: Solid Fuel Central

Household count for Primary Heating from Wood Boilers

Aggregate all wood users at GOR and urban/rural level and compare with relevant figures from BEIS RWS

Allocate NAEI emissions by technology type to each dwelling in each Output Area & 1x1km

Calibrate the number of wood users on assigned Closed Stoves or Open Fires count and Rerun with the Adjusted numbers

END: Mapping Wood Use
3.5 Agriculture

Emissions of PM$_{10}$ and PM$_{2.5}$ from agricultural livestock and poultry sources were distributed using agricultural census data 2014. Detailed, farm/holding level data within England was obtained from Defra for this purpose and was used to generate 1x1km resolution datasets for different livestock types. For Scotland, Wales and Northern Ireland agricultural census data 2014 were only available for larger spatial units – Parishes in Scotland, Districts in Northern Ireland and Small Areas in Wales. Therefore, land use data were used to generate a distribution of emissions within these spatial units. The distribution of grass land was used to distribute livestock. The resulting distributions for England, Scotland, Wales and Northern Ireland were combined and weighted according to the relevant regional statistics on the number of livestock or poultry in these regions.

The distributions of ammonia, methane and N$_2$O emissions from agricultural sources were mapped by the Centre for Ecology and Hydrology (CEH). Data from the Agricultural Census for England, Scotland, Wales and Northern Ireland were combined with emission factors for livestock, fertiliser use and CEH Land Cover Map 2007 data within the CEH model to calculate emissions maps.

A small proportion of emissions from the incineration of animal carcases were mapped as a point source. For the majority of national total emissions, however, little is known about the location of this activity. As a result, the residual was mapped as an area source across all UK arable land.

Land Cover Map 2007 data from CEH was used to map a variety of other agricultural emissions. These were distributed evenly across the arable land cover map for the UK:

- Emissions of VOCs from agrochemical use;
- CO$_2$, emissions from fertiliser application;
- Dioxin and Benzo[a]pyrene emissions from agricultural waste burning.

Agriculture stationary combustion was also mapped using the IDBR employment data and the UK agriculture energy consumption by fuel (ECUK Table 5.1c). The distribution of solid and liquid fuels was made based on the location of smoke control areas and the geographical distribution of gas availability. The method used is explained in summary in section 3.2 and further detailed in the supporting document Employment based energy consumption mapping in the UK (Tsagatakis, 2018).

Agricultural off-road emissions were distributed using a combination of arable, pasture and forestry land use data. Each of these land cover classes were weighted according to the off-road machinery activity on each land use. This data on the number of hours of use of tractors and other machinery on the land use types were sourced by Ricardo to improve the UK inventory in this sector.

3.6 Rail

The UK total diesel rail emissions are compiled for three journey types: freight, intercity and regional. The rail mapping methodology was updated for the 2011 emission maps. The emissions were spatially disaggregated using data from the Department for Transport’s Rail Emissions Model (REM). This provided emission estimates for each strategic route in Great Britain for passenger and freight trains. The emissions along each rail link were assumed to be uniform along the length of the rail link, as no information on either load variation or when engines were on or off is yet available. The most recent year in REM is 2009/10 and therefore the emissions for each strategic route have had to be scaled appropriately, as described in the UK Informative Inventory Report (Richmond, et al., 2020), using trends from national statistics on fuel consumption by rail operators. These were then distributed across Great Britain with the use of GIS data provided by Network Rail, containing the Strategic Routes Sections (SRS) as those have been defined in 2012 (Network Rail, 2012).

46 These did not incorporate the updated SCA locations
Rail emissions are distributed across Northern Ireland using 2012 data from Translink47 on amounts of fuel used on different sections of track aggregated to LA. These data are for passenger trains only as there is no freight activity in Northern Ireland.

Coal based rail emissions have been accounted for by extracting station, line and operating information from the latest version of the 'UK Heritage Railways' website48. This information was then verified against additional independent UK heritage railway guides49, and dedicated webpages for specific lines. National coal-based rail emissions have been proportionally allocated based on the number of days a line operated per year (consistent across all sections of a lines track). In total, 86 operational heritage lines were identified, and their main station coordinates plotted. Those stations with track lengths >5 miles were mapped with the assistance of route schematics alongside the aerial imagery and OS Open Background map services provided by ESRI. For the remaining 48 stations activity was assigned to a single 1x1km grid.

3.7 Shipping

A revised, more sophisticated, method has been used to map UK shipping emissions starting from NAEI 2016. Previously, shipping emissions were estimated by modelling fuel consumption from a database of shipping activities around UK waters for different vessel, fuel and journey types (Entec, 2010). This approach provided the best available solution at that time but had some recognised issues such as the age of the dataset (dating from 2007), estimated location of vessels rather than actual locations, low spatial resolution compared with other NAEI outputs50 and insufficient representation of shipping types other than internationally trading vessels. Improvements made to the shipping emissions modelling for the National Inventory, which were first reported in Scarbrough et al. (2017), give a higher resolution and greater accuracy to emissions estimates (through improved coverage of various vessel types), as well as enabling a deeper understanding of the spatial pattern of emissions compared with the previous approach.

The revised method has been developed using Automatic Identification System (AIS) data supplied by the Maritime and Coastguard Agency. AIS is an on-board ship system that transmits a message containing a vessel's position - and other information such as speed - every few seconds, to be received by other vessels, onshore or by satellites51. A complete set of one year’s worth of AIS data received by terrestrial UK receivers was obtained and processed to give a dataset that records shipping activity at five-minute intervals for the whole of the year 2014. This was then used to calculate fuel consumption and emissions for each vessel for the year 2014 in conjunction with a second dataset of technical characteristics of individual vessels. The estimates for year 2014 were then forecast to the current NAEI year accounting for activity changes over time, the 2015 sulphur emission control area change in sulphur content limit, fleet-wide efficiency gains and additional NOx emission factor changes to account for fleet turnover.

A detailed discussion of the methodology used to develop a shipping emissions inventory from AIS data can be found in Scarbrough et al. (2017). The mapping process closely followed this approach and is summarised in Figure 3-9. However, differences in reporting requirements between the UK inventory and NAEI maps, and the requirements of the air quality modelling community, necessitate that the map production process diverges from National Inventory compilation in several key ways.

The process of inventory mapping seeks to spatially disaggregate NAEI inventory totals in a way that represents how those emissions are geographically distributed in the real world. AIS data are inherently spatial as they record a vessel's position, and so emissions from each ship can be easily attributed to a 1km2 grid using the longitude and latitude accompanying each AIS message. A small number of messages are erroneously located upon terrestrial grid squares (Scarbrough et al., 2017, p. 10) or are legitimately in non-UK water bodies within the NAEI mapping area (e.g. vessel movements within major

47 http://www.translink.co.uk
49 http://www.heritagerailwaysmap.co.uk
50 NAEI maps are drawn on 1x1km resolution grid, but pre-2016 shipping emissions were based on 5x5km gridded emissions and the NAEI inherited this lower resolution limit.
rivers in north-eastern France). These emissions should not exist within the UK shipping map and have been removed.

Figure 3-9 Shipping emissions mapping process

Other differences between mapping and inventory production processes are listed in Table 3.4, along with the reason why the two datasets differ and a description of how this may influence interpretation. The effect of one of these differences is illustrated in Figure 3-10, which shows NO$_x$ emissions from different trip types included in the NAEI maps. More specifically, the map on the left indicates domestic activity (including fishing vessels), whereas the map on the right shows all remaining activity such as vessels travelling to international ports, vessels traveling from Crown dependences and any passing through activity (e.g. navigating through the English Channel).
Table 3.4 Differences between shipping emissions represented by NAEI mapping and the NAEI National Inventory

<table>
<thead>
<tr>
<th>Difference</th>
<th>Description</th>
<th>Motivation for difference</th>
<th>Consequence(s) of difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessels ‘passing through’</td>
<td>Emissions from vessels passing near the UK but not calling at the UK were excluded.</td>
<td>The NAEI maps aim to provide as complete an evidence base as possible of pollution sources that affect concentrations in the UK, and is not bound by adherence to the reporting requirements of the NAEI (National Inventory).</td>
<td>Including this category of activity will lead to higher intensity of emissions in certain geographic areas and is a better representation of the total emissions burden from all shipping sources.</td>
</tr>
<tr>
<td>UK international emissions</td>
<td>Emissions for UK international shipping based on fuel sales records from DUKES.</td>
<td>Emissions for UK international shipping based on AIS data (same method as domestic and non-UK shipping).</td>
<td>As above. Additionally: Emissions for UK international shipping based on AIS data (fuel consumption basis) is higher than that estimated from DUKES (fuel sales basis). But these two estimates are not directly comparable as UK international shipping also uses fuel not sold in the UK.</td>
</tr>
<tr>
<td>AIS message gaps</td>
<td>Emissions calculated from gaps between consecutive AIS messages of >24 hours were included as “domestic” for selected vessel types.</td>
<td>Emissions calculated from gaps between consecutive AIS messages of >24 hours have been excluded</td>
<td>To avoid allocating a large emission estimate representing >24 hours vessel operation to a single 1km grid cell, which would misrepresent the location of emissions. There was no need to exclude this from the NAEI National Inventory as that inventory is not spatially disaggregated.</td>
</tr>
<tr>
<td>Geographic limits</td>
<td>Emissions from vessels were calculated from AIS data, which were limited by the distance from shore-based AIS receivers, without an additional imposed geographical limit.</td>
<td>Emissions from vessels were calculated from AIS data, which were limited by the distance from shore-based AIS receivers, and with an additional imposed geographical limit of the NAEI grid extent.</td>
<td>Lower emissions included in the NAEI maps than in the National inventory total. However, the emissions not included in mapping are far from the UK coastline and not expected to have a large impact on pollutant concentrations in the UK.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>As above.</td>
</tr>
</tbody>
</table>
Although differences exist between NAEI maps and the National Inventory, mapping outputs also illustrate how key features of the inventory compilation process affect the geography of emissions. One such example is the impact emissions control areas have on the pattern of SO\textsubscript{2} emissions. From 2015 onwards, vessels within emission control areas are assumed to switch from fuel oil to gas oil52. The boundary of the Sulphur Emission Control Area (SECA) around the UK is clearly visible in maps of SO\textsubscript{2} from shipping emissions. Part of the SECA boundary is present off the coast of south-west Britain, and this is shown in Figure 3-11. Along the length of the SECA boundary (dotted white line) a pronounced linear drop in emissions can be seen from west to east. This reflects the fuel switching process, as vessels burn cleaner gas oil when within the SECA (to the east of the boundary) but burn fuel oil when outside its limits, emitting greater amounts of SO\textsubscript{2}.

52 The International Maritime Organisation (IMO) framework of the International Convention for the Prevention of Pollution from Ships (MARPOL) has regulated in MARPOL Annex VI to limit the sulphur content of fuels used by ships and allow the introduction of emission control areas.
3.8 Inland waterways

Emissions from inland waterways were first included nationally in the 2010 inventory. These were previously not reported in the UK inventory because there are no national fuel consumption statistics on the amount of fuel used by this sector in DUKES. However, as all fuel consumed by all sources in the UK was captured by the inventory, emissions from inland waterways were effectively captured, but were previously misallocated to other sectors using the same types of fuels.

Emissions from the inland waterways class are now calculated according to the following categories and sub-categories:
1. Sailing Boats with auxiliary engines;
2. Motorboats / Workboats (e.g. dredgers, canal, service, tourist, river boats);
 a. recreational craft operating on inland waterways;
 b. recreational craft operating on coastal waterways;
 c. workboats;
3. Personal watercraft i.e. jet ski; and
4. Inland goods carrying vessels.

A bottom-up approach was used based on estimates of the population and usage of different types of craft and the amounts of different types of fuels consumed. Estimates of both population and usage were made for the baseline year of 2008 for each type of vessel used on canals, rivers and lakes and small commercial, service and recreational craft operating in estuaries or occasionally going to sea. For this, data were collected from stakeholders, including British Waterways (now the Canal and Rivers Trust), DfT, Environment Agency, Maritime and Coastguard Agency (MCGA), and Waterways Ireland. Various proxy statistics were used to scale activities from 2008 to other years, as described in the UK Informative Inventory Report (Wakeling, et al., 2018).

Sparse data were available to estimate the distribution of emissions from this sector. As a result, total emissions from the inland waterways sector were mapped using datasets of vessel activity for a limited number of Great Britain and Northern Ireland’s waterways. Lock passage information for Northern Ireland were provided by Waterways Ireland for the Shannon Erne Waterway and the five Locks on the Lower Bann Navigation as well as a geospatial dataset. Data for GB, including geospatial data, were provided by the British Waterways. Where data gaps were identified, additional activity data were taken from the 'Members' area of the Association of Inland Navigation Authorities website.

The activity data were used in combination with geospatial information to calculate the product of boat activity and distance. This was subsequently combined with the UK’s emissions data.

3.9 Aircraft

The NAEI estimates national total emissions from aircraft operating on the ground and in the air over the UK, up to an altitude of 3000 feet (equating to the take-off and landing cycle). Emissions estimates are calculated from the number of movements of aircraft by type at UK airports (data provided by the Civil Aviation Authority) and from estimates of fuel consumption for component phases of the take-off and landing cycle. Emissions from aircraft at cruise are also included in the NAEI, although these emissions are not mapped.

The locations of airports and their ground level footprints were revised and mapped with the use of satellite imagery. Take-off and landing emissions were allocated to the individual airports based on the modelled emissions at each airport using the CAA data outlined above. In addition, at larger airports emissions from aircraft on the ground (e.g. whilst taxiing or in a holding pattern) have been separated from emissions whilst in the air (e.g. climb and approach phases below 3000 feet) as such activities tend to be more prevalent at larger airports, where greater movement by aircraft on the ground is often required. The former was mapped evenly over the airport apron and runway, the latter over a 4 km strip adjacent to the end of the airport runways representing emissions from aircraft at climb or descent below 3000 feet. For smaller airports, all emissions were mapped evenly over the airport footprint. Unlike the rest of the airports, emissions from Heathrow were distributed based on the geographical aircraft activity as this is reported by the Heathrow Airport Emission Inventory (Walker, 2017).

The maps for aircraft emissions provide a useful split of emissions occurring on the ground and in the air for the air pollution modelling community.

53 https://www.aina.org.uk/
3.10 Industrial off-road

Industrial off-road emissions derive from a range of machinery used in agriculture such as tractors and combine harvesters; industry such as portable generators, forklift trucks and air compressors; construction such as cranes, bulldozers and excavators; domestic lawn mowers; and aircraft support equipment. These emissions have historically been mapped based on employment in heavy industry. In earlier studies, modelling artefacts have resulted in emission estimates being disproportionately allocated to city centres because of the location of the headquarters of many companies associated with heavy industry and therefore employees in such areas. The NAEI team have reviewed the employment dataset for the maps to identify and remove those instances where high industrial employment in urban areas did not correlate well with expected heavy industry activity.

3.11 Accidental fires and small-scale waste burning

The distribution of accidental fires across the UK is particularly uncertain. Distribution maps were made using the Land Cover Map 2007 supplied by CEH. The land cover type was matched to the type of accidental fire as shown in Table 3.5. Classes were added together on an equal basis to make aggregated land cover maps for each NAEI sector.

The ‘Accidental fires - dwellings’ and ‘Accidental fires - other buildings’ sectors have been mapped using the ONS population estimates.

Table 3.5 Land cover data used to distribute emissions from fires

<table>
<thead>
<tr>
<th>NAEI Source sector</th>
<th>Land Cover classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accidental fires - forests</td>
<td>Broad leaved/mixed woodland</td>
</tr>
<tr>
<td></td>
<td>Coniferous woodland</td>
</tr>
<tr>
<td>Accidental fires - straw</td>
<td>Arable cereals</td>
</tr>
<tr>
<td></td>
<td>Arable horticulture</td>
</tr>
<tr>
<td></td>
<td>Arable non-rotational</td>
</tr>
<tr>
<td>Accidental fires - vegetation</td>
<td>Set-aside grass</td>
</tr>
<tr>
<td></td>
<td>Natural grass</td>
</tr>
<tr>
<td></td>
<td>Calcareous grass</td>
</tr>
<tr>
<td></td>
<td>Acid grass</td>
</tr>
<tr>
<td></td>
<td>Bracken</td>
</tr>
<tr>
<td></td>
<td>Bogs (deep peat)</td>
</tr>
<tr>
<td></td>
<td>Dense dwarf shrub heath</td>
</tr>
<tr>
<td></td>
<td>Open dwarf shrub heath</td>
</tr>
<tr>
<td>Accidental fires - vehicles</td>
<td>Suburban</td>
</tr>
<tr>
<td>Small scale waste burning</td>
<td>Suburban</td>
</tr>
<tr>
<td>Bonfires</td>
<td>Suburban</td>
</tr>
</tbody>
</table>

54 https://www.ceh.ac.uk/services/land-cover-map-2007
55 https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/
3.12 Landfill sites

Emissions from landfill sites feature in the NAEI in two different source sectors. The first is landfill gas combustion which is used for electricity generation and/or heating, which are allocated to the energy sector. These emissions are mapped as point sources. The second sector comprises emissions from the landfill sites themselves, which are allocated to the waste sector. This sector was mapped as an area source as gas release has the potential to occur across these open-surface waste sites (uniform release rates are assumed across individual sites due to limitations in the spatial information).

The information on the location and scale of landfill activity varied across the UK and it is based on 2010 datasets. Information on the geographical extent of landfill sites in England and Wales was available from the Environment Agency in GIS format. In Scotland and Northern Ireland, the geographic locations of landfill sites were available from SEPA and DAERA, but not the spatial extent. SEPA figures, however, also provided estimates of infill received by each landfill in 2008. Using this information, estimates of the Municipal Solid Waste (MSW) arisings received by each landfill site were made and used as a proxy for the emission rates for landfills in the UK. Distributions were calculated using:

- Regional MSW waste arising by Devolved Administration;
- Actual infill rates for landfills in Scotland for 2008; and
- Area of landfill as a proxy for infill rate for sites in England, Wales and Northern Ireland (information on the area of landfill was absent for Northern Ireland, hence all operations were assumed to be of similar size).

For the methane emission maps, a new set of landfill site boundaries has been generated for the NAEI 2017 to allow more accurate representation of methane emissions from current and historic sites. The information on the location and scale of landfill activity varied across the UK. Information on the geographical extent of landfill sites in England and Wales was available from the Environment Agency and Natural Resources Wales in GIS format. In Scotland and Northern Ireland, only the geographic locations of landfill sites were available from SEPA and DAERA. Approximate spatial extents for each site location were created based on a combination of aerial images, OS MasterMap and/or OpenStreetMap. For England and Wales, where all or part of a historic site had been re-opened, this part was removed where it overlapped the new site boundary data to avoid double counting. An age band was assigned to each landfill site boundary based on current or historic site details and Waste Return Notices. Each band was allocated to a proportion of the total annual emissions recorded per Devolved Administration as shown in the table below.

Table 3.6 Proportions of the 2017 landfill methane emitted from sites operated in different periods

<table>
<thead>
<tr>
<th>Site class</th>
<th>Waste deposited in years</th>
<th>Methane generated in 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1945-1979</td>
<td>4.5%</td>
</tr>
<tr>
<td>2</td>
<td>1980-1989</td>
<td>7.5%</td>
</tr>
<tr>
<td>3</td>
<td>1990-1999</td>
<td>19%</td>
</tr>
<tr>
<td>4</td>
<td>2000-2009</td>
<td>35%</td>
</tr>
<tr>
<td>5</td>
<td>2010-2017</td>
<td>34%</td>
</tr>
</tbody>
</table>
3.13 Offshore oil and gas

Emissions from offshore installations are provided by BEIS, based on information supplied by the operators of those installations. These include:

- Use of gas oil;
- Use of fuel oil;
- Use of natural gases;
- Flaring;
- Venting of gases;
- Loading of crude oils into tankers;
- Fugitive emissions from valves, flanges etc.;
- Direct process emissions.

These estimates are aggregated for the UK totals. For the UK emission maps, the reported emissions by installation were split into emissions from fixed platforms and mobile units such as diving support vessels and drill rigs. The position of wells is known, and so the location of the well that led to the discovery of each field is then used as the location of all fixed platforms associated with that field. It is unlikely that the position of these initial discovery wells will exactly coincide with the position of the platforms intended to exploit those discoveries. However, it was assumed that they will be in that vicinity and, in the absence of better information, this is the best compromise that can currently be achieved. In some cases, this will inevitably lead to platforms being mapped some distance away from their actual position. This is more evident in large fields with multiple platforms that clearly cannot all be located at the same place. For example, the Brent & Forties fields have multiple platforms that are located some kilometres apart but are mapped at the same location. However, for the purposes of modelling long range air pollution from these sources, this is not a significant problem. Similarly, there is no population exposure to released pollutants from these sources within their vicinity, other than workers present on the platforms themselves, as there might be for terrestrial industrial installations. Other platforms are used to exploit multiple small fields and so are likely positioned between those fields. For the moment though, they are mapped by allocating to a single field and therefore located using the discovery well for that field.

3.14 Other sectors

Emissions of PM$_{10}$ from mines and quarries were distributed using data from the British Geological Survey on the locations of mines and quarries in the UK. This data set includes the location of the site and a brief description of products and commodities. There are no data on actual production amounts for each mine or quarry. Regional production statistics for the various commodities were therefore distributed across the sites in each region on an equal weight basis. Only open cast mining and quarrying activities are included. The production statistics were aggregated to 1 km2 grid and PM$_{10}$ emissions distributed on this basis.
4 Emission maps and data products

4.1 Compilation of maps

The 1x1km\(^{56}\) resolution maps are compiled in a GIS environment. Maps for each sector are generated by summing the spatially distributed proportions of the NAEI national total (see Figure 4-1).

Area and road transport source emissions are aggregated for the 11 UNECE source sectors and (GNFR\(^{57}\) sectors for international reporting), and point source emissions aggregated to a 1x1km grid are added to the area source emissions to calculate a UK total emission map such as those shown in Error! Reference source not found., Figure 4-3, and Figure 4-4 below for PM\(_{10}\), SO\(_2\) and CO\(_2\) emissions respectively.

A full set of maps is available at:

https://naei.beis.gov.uk/data/map-uk-das

and through an online interactive GIS tool at:

https://naei.beis.gov.uk/emissionsapp .

\(^{56}\) Mapped outputs for ammonia (NH\(_3\)), methane (CH\(_4\)) and nitrous oxide (N\(_2\)O) are produced under the same framework, but some sources are limited to 5x5 km resolution due to non-disclosure constraints

\(^{57}\) http://www.ceip.at/fileadmin/inhalte/emep/doc/AnnexIII_Aggregation_gridded_data_300909.doc
Figure 4-2 UK total PM\textsubscript{10} emissions in 2018
Figure 4-3 UK total SO$_2$ emissions in 2018
Figure 4-4 UK total CO₂ emissions in 2018 excluding emissions from Land Use Change

UK Emissions of:
Carbon Dioxide (as C) 2018 t/1x1km

- < 1
- 1 - 3
- 3 - 10
- 10 - 32
- 32 - 100
- 100 - 1995
- > 1995

All maps © Crown copyright. All rights reserved Defra. Licence number 100022961 (2020) and BEIS. Licence number 100037028 (2020) LPS © Crown copyright and database right 2020 Licence INSPIRE
5 Uncertainties and verification

The assessment of uncertainties to spatially disaggregate the emissions is achieved via a semi-quantitative and quantitative approach outlined in the following sections. It should be noted that these assessments of uncertainty do not include an assessment of uncertainty of the emissions themselves. Annex 2.4.1 in Brown et al. (2019) provides a comparison of NAEI activities with those in the Digest of UK Energy Statistics (DUKES).

The semi-quantitative approach for assessing the overall emission map quality involves comparing the proportion of emissions, by pollutant, mapped as point or area sources against the national total. Lower uncertainty is associated with emissions from point sources, as the emissions are geographically constrained to a particular location (i.e. industrial stacks). In terms of emission outputs, point sources are often directly monitored by operators and/or have a record of the materials processed on site, used to inform the mapping and therefore are inherently less uncertain.

A quantitative approach for assessing uncertainty in the pollutant maps is subsequently achieved through the application of uncertainty scores to emissions associated with different polluting activities derived from comparison of NAEI and modelled emissions. This better represents the uncertainty in the geographic distribution of emissions of area sources, with area source grids based on actual production/emission data providing a low uncertainty score.

Verification, involving the comparison of independently-derived data (i.e. ambient air quality monitoring) and model outputs to provide a ‘reality check’ on the emissions estimates is briefly outlined, and discussed in further detail by Brookes et al (2020).

5.1 Estimating uncertainty

Whilst there is an internationally agreed methodology on how to create spatial maps, there is no internationally agreed methodology on how to estimate uncertainty from such maps. Countries develop their own approaches, although many elements are likely to be common between them. Our approach is discussed in this section.

As noted in previous sections, the mapping of emissions has been divided into point and area sources. In general, mapped point source data are expected to be more accurate than those for area sources since they are based upon reliable data produced for regulatory purposes. In contrast, area source emissions are mapped using a variety of surrogate data types of varying quality. Every attempt is made to use the highest quality area source data available (within overall budgetary constraints), and the NAEI team seeks to constantly improve the accuracy of area source mapping by using new, updated and additional information when this will improve mapping. However, in some cases surrogate statistics used to spatially distribute emissions from a pollutant source may not be ideally suited to this task.

Assessing the overall quality of emission maps is an important component of mapping the NAEI, and the project has approached this in two ways. Firstly, a high-level appreciation of uncertainty can be obtained by comparing the proportion of national total emissions that are mapped as point or area sources. Point sources are generally recognised as superior to area sources in terms of the accuracy and precision of both emissions estimates and their location. The percentage of point and area sources that contribute to pollutant totals is shown in Figure 5-1, and suggests that maps for mercury, dioxins, hydrogen chloride, sulphur dioxide and carbon dioxide are likely to be of higher quality than those for ammonia, benzo[a]pyrene, methane, nitrous oxide and PM10 for example. However, this assessment does not differentiate between point source data which are derived from good site-specific emissions data and those which are based on simple modelling, nor does it differentiate between area sources which are mapped using reliable appropriate surrogate statistics and those which use less optimal datasets.
Figure 5-1 Contribution of point sources to mapped emission totals (2018)

- NH3: 1% area, 99% point
- Benzo[a]pyrene: 3% area, 97% point
- CH4: 4% area, 96% point
- N2O: 5% area, 95% point
- PM10: 10% area, 90% point
- 1,3butadiene: 10% area, 90% point
- Benzene: 17% area, 83% point
- CO: 24% area, 76% point
- NMVOC: 27% area, 73% point
- NOx: 34% area, 66% point
- Lead: 37% area, 63% point
- CO2: 37% area, 63% point
- SO2: 50% area, 50% point
- HCl: 52% area, 48% point
- Dioxins: 54% area, 46% point
- Mercury: 62% area, 38% point
A more sophisticated approach to assessing uncertainty in the maps is to use 'data quality ratings' ranging from 1 (highest quality) to 5 (lowest quality) for the mapping of emissions of each pollutant and source. An overall 'confidence rating' can then be calculated for each pollutant map as follows:

\[
\text{Confidence Rating} = \frac{\text{Emission}_A \times \text{Rating}_A + \text{Emission}_B \times \text{Rating}_B \text{ etc.}}{\text{Emission}_{\text{Total}}}
\]

Where:

- \(\text{Emission}_A, \text{Emission}_B\) etc. are the emissions of the pollutants from each of the sources in the inventory
- \(\text{Rating}_A, \text{Rating}_B\) etc. are the data quality ratings applied to the mapping of emissions from each of the sources in the inventory

Some general rules have been applied when defining data quality ratings for mapping procedures. Point source data from industry and regulators are given a rating of 1 because the locations of emissions are 'known' precisely. Modelled point source data are given a quality rating of 2 to reflect the fact that, although all point sources are known, there is uncertainty regarding the distribution of emissions over these sources. Quality ratings for area/line sources are allocated following an assessment of:

- The quality of the spatially resolved data used to make the grid;
- The reliability of the grid as a measure of emissions from a source.

We have not assigned an uncertainty range to each scale point e.g. a score of 1 being equivalent to an uncertainty of <10%. Considerable work would be needed to quantify all the grids sufficiently accurately. In the future, we are considering quoting the uncertainty of spatially disaggregating the emissions based on information such as e.g. activity data, fuel consumption or emissions. This would accompany the information in Table 5.1 and this would provide at least an indication of the underlying uncertainty in the data used for the gridded data.

Even though the current uncertainty approach does not generate a full qualitative assessment of uncertainty, the resource efficient semi-quantitative approach still allows methodological improvements of the gridded emissions to be prioritised.

Table 5.1 Spatial uncertainty scoring system

<table>
<thead>
<tr>
<th>Emission</th>
<th>Score</th>
<th>Typical remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1</td>
<td>Highest</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Lowest</td>
</tr>
</tbody>
</table>

Use of grids based on actual capacity/production/emissions data for a given source

Use for grids which is based on good, relevant, data at high level of definition but with maybe some minor shortcomings (e.g. road transport and population emissions)

Use of grids which are believed to be fairly good, albeit with some significant shortcomings (e.g. grids based on employment data which define a particular sector)

Use of grids which are believed to be fairly poor with major shortcomings (e.g. grids based on employment data where a sector cannot be clearly defined, such as the 'fabrication of metal products')

Low quality grids (e.g. use of population or general employment statistics to map a specialised sector with limited numbers of processes or highly regionalised presence. These include cider manufacture, marine coating etc.)
A rating is defined for each of the above parameters and the mean is used as the overall data quality rating for the source sector. For example, a grid based on 2018 ONS population estimate data has been allocated a rating of 2 since it is based on very accurate census data which is generalised across the 1x1 km grid. The use of such a grid to map emissions from decorative paint use is considered appropriate and has been assigned a rating of 1. The area source data for decorative paints therefore has an overall quality rating of 1.5. On the other hand, while a grid based on suburban land cover is also good quality and assigned a rating of 2, its use to map emissions from small scale waste burning (bonfires) is considered much less reliable and is given a rating of 4. Area source data for these emissions has an overall quality rating of 3. Figure 5-2 shows the resulting confidence ratings for the NAEI pollutant maps.
Figure 5-2 Confidence ratings for mapping elements of the 2018 NAEI maps
5.2 Verification

Verification can be used to help build confidence in the mapping work and to prioritise future methodological improvements. It is good practice to verify emissions maps, particularly if they are to be reliably used in dispersion models to predict potential exceedances of air quality objectives and European limit values.

Within this context, it is helpful to draw a distinction between emission inventory verification and validation. Validation is the process of checking that emissions have been estimated using the appropriate protocols, while verification involves comparison with independently derived data such as ambient monitoring data and model outputs to provide a ‘reality check’ on the emissions estimates.

There are no other emission maps which can verify, in other words be directly compared to, the maps which are produced from this work. However, there are steps which can be taken to help verify this work.

The NAEI uses the outputs from Defra’s Pollution Climate Model (PCM) maps (produced under the Modelling of Ambient Air Quality, MAAQ project) to help judge the quality of the emission maps generated in this work. Since atmospheric concentrations depend on complex processes of dilution, atmospheric chemistry and dispersion of emissions in the atmosphere there will not be a direct relationship between the atmospheric concentration and emission maps, but concentrations and emissions are interdependent.

The model calibration indicates how well the modelled concentrations, based on the NAEI emission maps, correlate with the measured concentrations at the locations where those measurements are made. The model calibration is completed after the spatial emissions team finishes and reports the NAEI emission maps and methodology report. Therefore, the team does not have this information available when writing the report. The closest alignment of data sets is a comparison of the previous year’s MAAQ with the current NAEI emission maps. The spatial emissions team routinely seeks feedback from the MAAQ project in a programme of continuous improvement so that features identified through the application of the emissions data can be challenged and methodologies reviewed.

The annual mean background concentration of air pollutants is made up of three parts:

- Contributions from relatively distant major point and area sources such as power stations, large conurbations and transboundary sources. Measurements from monitoring sites well away from local sources, for example from rural stations within the UK’s Automatic Urban and Rural Network (AURN), provide good indications of the spatial variation of concentrations arising from distant sources;
- Contributions from local point sources; where for example, concentrations are modelled using dispersion models parameterised using data from individual industrial sites;
- Contributions from more local diffuse sources (area and line sources such as road transport related activity).

The NAEI area source maps are routinely used in air quality models to characterise the local contribution to ambient concentrations of air pollutants. National scale air quality modelling activities use emissions from the NAEI area source maps to model ambient concentrations across the whole UK. As part of this work, a dispersion kernel modelling approach is applied to the area source emission maps within an area of 33 km x 33 km square surrounding each receptor location, to calculate the uncalibrated contribution from area sources to the ambient concentration at a central receptor. Ambient measurements from monitoring sites are then used to calibrate this area source model. The strength of the relationship between measured concentrations and the model results (based on the NAEI emissions) provides an indication of the quality of the emission distribution as it compares actual concentrations measured with predicted concentrations from the mapped emissions. The example shown in Figure 5-3 below indicates scatter in the B(a)P area source calibration as modelled using NAEI 2016 emission maps. The calibration coefficient for Great Britain (1.0138) declined over UK wide calibration coefficients for previous assessments using older versions of NAEI (6.434 for 2014).

58 Some investigatory work has been done for Defra comparing satellite air quality maps with the emission maps generated as part of this work, but the data in these maps are not directly comparable.

59 http://uk-air.defra.gov.uk/interactive-map
reduction in the coefficients and the reduced scatter in the fit suggests improved understanding of the scale and distribution of emissions from domestic wood combustion introduced in the NAEI 2015 emission maps.

Figure 5-3 Calibration of area source model for B(a)P

6 References

Network Rail. (2012). SRS Provisional Data provided by Network Rail’s Geospatial Network Team in December 2012.

Appendix 1 Bar Charts of UK Emissions split by UNECE Source Sector

NMVOC Emissions in 2018 by UNECE Source Sector as shown on the NAEI 1x1km maps

- Combustion in energy production and transfer (0.41%)
- Combustion in industry (1.44%)
- Waste Treatment and disposal (2.90%)
- Road transport (3.09%)
- Other transport and machinery (3.69%)
- Combustion in commercial, institutions, residential and agricultural sectors (5.50%)
- Other sources and sinks (10.34%)
- Agricultural, forests and landuse change (11.21%)
- Extraction / Distribution of fossil fuels (12.06%)
- Production processes (16.21%)
- Solvent use (33.14%)
Ammonia Emissions in 2018 by UNECE Source Sector as shown on the NAEI 1x1km maps

- Other transport and machinery (0.02%)
- Combustion in energy production and transfer (0.04%)
- Solvent use (0.47%)
- Production processes (0.79%)
- Combustion in commercial, institutions, residential and agricultural sectors (0.88%)
- Combustion in industry (1.13%)
- Road transport (1.56%)
- Waste Treatment and disposal (2.55%)
- Other sources and sinks (7.89%)
- Agricultural, forests and landuse change (84.68%)
Sulphur Dioxide Emissions in 2018 by UNECE Source Sector as shown on the NAEI 1x1km maps

- Extraction / Distribution of fossil fuels (<0.000%)
- Solvent use (0.02%)
- Waste Treatment and disposal (0.69%)
- Road transport (0.82%)
- Production processes (2.78%)
- Other transport and machinery (7.30%)
- Combustion in commercial, institutions, residential and agricultural sectors (27.77%)
- Combustion in industry (30.15%)
- Combustion in energy production and transfer (30.47%)
PM2.5 Emissions in 2018 by UNECE Source Sector as shown on the NAEI 1x1km maps

- Extraction / Distribution of fossil fuels (0.02%)
- Other sources and sinks (1.60%)
- Solvent use (1.62%)
- Waste Treatment and disposal (2.53%)
- Agricultural, forests and land use change (2.68%)
- Combustion in energy production and transfer (3.19%)
- Production processes (6.75%)
- Other transport and machinery (7.20%)
- Road transport (11.21%)
- Combustion in industry (18.43%)
- Combustion in commercial, institutions, residential and agricultural sectors (44.81%)
T: +44 (0) 1235 753000
E: enquiry@ricardo.com
W: ee.ricardo.com