Guidance Note for Use of Projection Factors for Background and Roadside pollutant concentrations.

There are two ways to use the projections factors provided in the excel spreadsheet:
1: For measurement data; or
2: for NETCEN background mapped data as available on
http:/ / www.airquality.co.uk/ archive/ laqm/ tools.php
The following describes how to project data for future years using the factors available on http:/ / www.airquality.co.uk/ archive/ laqm/ tools.php?tool=year.

The factors must be applied to mapped background data carefully. The following rules apply:

For all pollutants, projections should never be made backwards to the relevant year only forwards from the nearest map to the relevant year. If a map exists for the year required - use the map - do not project from previous year maps.

For N $0 x$ and NO_{2} : use 2001, 2005 and 2010 maps for 2001, 2005 and 2010 respectively. Years 2002 - 2004: use the mapped 2001 concentration and relevant factors for interim years. Years 2006-2009: use the mapped 2005 concentrations and relevant factors for interim years. Years 2011 and beyond: use the mapped 2010 concentrations and relevant factors for following years. Anexampefor NOx badkgoundisshownbdow

> for $\mathbf{P M}_{10}$: use 2001, 2004 and 2010 maps for 2001,2004 and 2010 respectively.
> Y ears 2002 - 2003: use the mapped 2001 concentration and relevant factors for interim years. Y ears 2005 - 2009: use the mapped 2004 concentrations and relevant factors for interim years. Y ears 2011 and beyond: use the mapped 2010 concentrations and relevant factors for following years. AnexampeforPM ${ }_{10}$ isshownbdow andtakesaccunt of thettal, seeondaryand pimarybadkgoundprgetions that need tobeprgeted
for Benzene : use 2001, 2003 and 2010 maps for 2001, 2003 and 2010 respectively.
Y ear 2002: use the mapped 2001 concentration and the 2002 factor.
Years 2004-2009: use the mapped 2003 concentrations and relevant factors for interim years. Years 2011 and beyond: use the mapped 2010 concentrations and relevant factors for following years.

for CO : use 2001map for 2001.

Year 2002-2025: use the mapped 2001 concentration and relevant factors for following years.
for 1,3-butadiene : use 2001 and 2003 map for 2001 and 2003 respectively.
Y ear 2002: use the mapped 2001 concentration and relevant factor for 2002.
Year 2004-2025: use the mapped 2003 concentration and relevant factors for following years.

Example of projection of NOx background concentrations:

Background NO x concentrations are required for an assessment for the years 2003, 2008 and 2013.
Concentrations ($\mu \mathrm{g} / \mathrm{m}^{3}$) derived from the mapped background data are:

2001 N Ox background concentration	200 N Ox background concentration	2010 N Ox background concentration
33.7	29.2	23.2

The factors to be used for the projections are those highlighted in the table below:

Year	NOx Background Projection Factor
2001	1.000
2002	0.961
2003	$\mathbf{0 . 9 2 6}$
2004	0.896
2005	$\mathbf{0 . 8 6 9}$
2006	0.836
2007	0.800
2008	$\mathbf{0 . 7 6 4}$
2009	0.728
2010	$\mathbf{0 . 6 9 5}$
2011	0.670
2012	0.650
2013	$\mathbf{0 . 6 3 2}$

Therefore:

Future Y ears required	2003	2008	2013
	2001 Mapped x 2003 Factor	2005 Mapped x 2008/ 2005 Factor	2010 Mapped $\times 2013 / 2010$ Factor
Calculation	33.7×0.926	$29.2 \times 0.764 / 0.869$	$23.2 \times 0.632 / 0.695$
Equals $\left(\boldsymbol{\mu g} / \mathbf{m}^{3}\right.$)	31.2	25.7	21.1
Base Year Factor for forward projection	2001	2005	2010

Projected background NOx concentrations of 31.2, 25.7 and $21.1 \mu \mathrm{~g} / \mathrm{m}^{3}$ have been calculated for 2003, 2008 and 2013 respectively.

Example of projection of PM_{10} background concentrations:

Background PM_{10} concentrations are required for an assessment for the years 2003, 2008 and 2013.
Concentrations ($\mu \mathrm{g} / \mathrm{m}^{3}$ gravimetric) derived from the mapped background data are:

2001 PM $_{10}$ Total concentration	2004 PM $_{10}$ Total concentration	2010 PM $_{10}$ Total concentration	Secondary 2001 PM $_{10}$ concentration
19.3	18.5	17.0	7.8

The factors to be used for the projections are shown in the table below:

Year	Primary PM Projection Factor	Secondary PM 10
Background Projection		
Factor		

To project PM_{10} background concentrations the primary, secondary and coarse fractions must be considered. The coarse fraction of PM_{10} is assumed to be 10.5 ($\mu \mathrm{g} / \mathrm{m}^{3}$ gravimetric) for all years.

To calculate Total 2003 PM $_{10}$ Background:

Firstly, calculate the primary PM_{10} concentration in 2001.

Total 2001(mapped) $-($ coarse + secondary 2001 mapped $)$	$19.3-(10.5+7.8)$
$=$	$=$
The 2001 primary $\mathbf{P M}_{10}$ concentration	$\mathbf{1 . 0 0}$

Adjust the Primary $2001 \mathrm{PM}_{10}$ concentration to 2003:

Primary 2001 x 2003 projection factor	Primary $\mathbf{2 0 0 3} \mathbf{P M}_{\mathbf{1 0}}$
$=$	$=$
1.00×0.954	$\mathbf{0 . 9 5}$

Then, calculate the secondary $2003 \mathbf{P M}_{10}$ concentration:

2001 Secondary x 2003 projection factor	Secondary $\mathbf{2 0 0 3} \mathbf{P M}_{10}$
7.8×0.955	$\mathbf{7 . 4 5}$

The total $2003 \mathbf{P M}_{10}$ concentration is therefore:

$$
\begin{array}{c|c}
\hline 2003 \text { Primary }+2003 \text { Secondary }+ \text { Coarse } & \text { Total } 2003 \text { PM }_{10} \\
0.95+7.45+10.5 & \mathbf{1 8 . 9}
\end{array}
$$

To calculate Total 2008 PM $_{10}$ Background:

The primary $\mathrm{PM}_{10} 2008$ concentration first needs to be calculated:

Now adjust the Primary $2004 \mathbf{P M}_{10}$ concentration to 2008 using the 2004 and 2008 adjustment factors:

Primary $2004 \times 2008 / 2004$ factors	Primary $\mathbf{2 0 0 8} \mathbf{~ P M}_{10}$
$=$	$=$
$0.73 \times(0.850 / 0.930)$	$\mathbf{0 . 6 7}$

Then, calculate the secondary $2008 \mathrm{PM}_{10}$ concentration:

2001 Secondary x 2008 projection factor 7.8×0.841

2001 Secondary x 2008 projection factor	Secondary $\mathbf{2 0 0 8} \mathbf{P M}_{\mathbf{1 0}}$
7.8×0.841	$\mathbf{6 . 5 6}$

The total $2008 \mathrm{PM}_{10}$ concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ is therefore:
2008 Primary +2008 Secondary + Coarse $0.67+6.56+10.5$

To calculate Total 2013 PM $_{10}$ Background:

The primary $\mathrm{PM}_{10} 2013$ concentration first needs to be calculated:

Total 2010 (mapped)	17
-	-
Coarse	10.5
-	-
Secondary 2010	6.20
Secondary $2010=2001$ Secondary x 2010 projection factor	
7.8×0.795	6.20
$=$	=
Primary $2010 \mathrm{PM}_{10}$	0.3

Now adjust the Primary 2010 PM $_{10}$ concentration to 2013 using the 2010 and 2013 adjustment factors:

Primary $2010 \times 2013 / 2010$ factors	Primary $\mathbf{2 0 1 3} \mathbf{P M}_{\mathbf{1 0}}$
$=$	$=$
$0.3 \times(0.794 / 0.815)$	$\mathbf{0 . 2 9}$

Then, calculate the secondary $2013 \mathbf{P M}_{10}$ concentration:

2001 Secondary $\times 2013$ projection factor	Secondary $\mathbf{2 0 1 3} \mathbf{P M}_{10}$
7.8×0.795	$\mathbf{6 . 2 0}$

The total $2013 \mathbf{P M}_{10}$ concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ is therefore:
2013 Primary +2013 Secondary + Coarse
$0.29+6.2+10.5$
Total 2013 PM $_{10}$
$0.29+6.2+10.5$
17.0

