

Guidance Note for Use of Projection Factors for Background and Roadside pollutant concentrations.

There are two ways to use the projections factors provided in the excel spreadsheet:

1: For measurement data; or

2: for NETCEN background mapped data as available on http://www.airquality.co.uk/archive/laqm/tools.php

The following describes how to project data for future years using the factors available on http://www.airquality.co.uk/archive/lagm/tools.php?tool=year.

The factors must be applied to mapped background data carefully. The following rules apply:

For all pollutants, projections should never be made backwards to the relevant year only forwards from the nearest map to the relevant year. If a map exists for the year required – use the map – do not project from previous year maps.

For NOx and NO₂: use 2001, 2005 and 2010 maps for 2001, 2005 and 2010 respectively.

Years 2002 – 2004: use the mapped 2001 concentration and relevant factors for interim years.

Years 2006 – 2009: use the mapped 2005 concentrations and relevant factors for interim years.

Years 2011 and beyond: use the mapped 2010 concentrations and relevant factors for following years.

An example for NOx background is shown below.

for PM₁₀ : use 2001, 2004 and 2010 maps for 2001, 2004 and 2010 respectively.

Years 2002 - 2003: use the mapped 2001 concentration and relevant factors for interim years.

Years 2005 – 2009: use the mapped 2004 concentrations and relevant factors for interim years.

Years 2011 and beyond: use the mapped 2010 concentrations and relevant factors for following years.

An example for PM_{10} is shown below, and takes account of the total, secondary and primary background projections that need to be projected.

for Benzene : use 2001, 2003 and 2010 maps for 2001, 2003 and 2010 respectively.

Year 2002: use the mapped 2001 concentration and the 2002 factor.

Years 2004 – 2009: use the mapped 2003 concentrations and relevant factors for interim years.

Years 2011 and beyond: use the mapped 2010 concentrations and relevant factors for following years.

for CO : use 2001map for 2001.

Year 2002 - 2025: use the mapped 2001 concentration and relevant factors for following years.

for 1,3-butadiene : use 2001 and 2003 map for 2001 and 2003 respectively.

Year 2002: use the mapped 2001 concentration and relevant factor for 2002.

Year 2004 - 2025: use the mapped 2003 concentration and relevant factors for following years.

Example of projection of NOx background concentrations:

Background NOx concentrations are required for an assessment for the years 2003, 2008 and 2013. Concentrations ($\mu g/m^3$) derived from the mapped background data are:

2001 NOx background 2005 NOx background		2010 NOx background
concentration concentration		concentration
33.7	29.2	23.2

The factors to be used for the projections are those highlighted in the table below:

Year	NOx Background Projection Factor
2001	1.000
2002	0.961
2003	0.926
2004	0.896
2005	0.869
2006	0.836
2007	0.800
2008	0.764
2009	0.728
2010	0.695
2011	0.670
2012	0.650
2013	0.632

Therefore:

Future Years required	2003	2008	2013	
	2001 Mapped x 2003 Factor	2005 Mapped x 2008/2005 Factor	2010 Mapped x 2013/2010 Factor	
Calculation	33.7 x 0.926	29.2 x 0.764/0.869	23.2 x 0.632/0.695	
Equals (mg /m ³)	31.2	25.7	21.1	
Base Year Factor for forward projection	2001	2005	2010	

Projected background NOx concentrations of 31.2, 25.7 and 21.1 $\mu g/m^3\,$ have been calculated for 2003, 2008 and 2013 respectively.

Example of projection of PM₁₀ background concentrations:

Background PM₁₀ concentrations are required for an assessment for the years 2003, 2008 and 2013.

Concentrations (μ g/m³ gravimetric) derived from the mapped background data are:

2001 PM ₁₀ Total concentration	2004 PM ₁₀ Total concentration	2010 PM ₁₀ Total concentration	Secondary 2001 PM ₁₀ concentration
19.3	18.5	17.0	7.8

The factors to be used for the projections are shown in the table below:

Year	Primary PM ₁₀ Background Projection Factor	Secondary PM ₁₀ Background Projection Factor
2001	1.000	1.000
2003	0.954	0.955
2004	0.930	0.932
2008	0.850	0.841
2010	0.815	0.795
2013	0.794	0.795

To project PM_{10} background concentrations the primary, secondary and coarse fractions must be considered. The coarse fraction of PM_{10} is assumed to be 10.5 (µg/m³ gravimetric) for all years.

To calculate Total 2003 PM₁₀ Background:

Firstly, calculate the primary PM₁₀ concentration in 2001.

Total 2001(mapped) – (coarse + secondary 2001 mapped)	19.3 - (10.5 + 7.8)
=	=
The 2001 primary PM_{10} concentration	1.00

Adjust the Primary 2001 PM₁₀ concentration to 2003

Primary 2001 x 2003 projection factor	Primary 2003 PM ₁₀
=	=
1.00 x 0.954	0.95

Then, calculate the secondary 2003 PM₁₀ concentration:

2001 Secondary x 2003 projection factor	Secondary 2003 PM ₁₀
7.8 x 0.955	7.45

The **total 2003 PM**₁₀ concentration is therefore:

2003 Primary + 2003 Secondary + Coarse	Total 2003 PM ₁₀
0.95 + 7.45 + 10.5	18.9

To calcu	late Total	l 2008 PM ₁	. Back	mund
			0 Datas	siounu.

=	
7.8 x 0.932	7.27
Secondary 2004 = 2001 Secondary x 2	2004 projection factor
Secondary 2004	7
Coarse -	1
-	
Total 2004 (mapped)	1

Now adjust the Primary 2004 PM_{10} concentration to 2008 using the 2004 and 2008 adjustment factors:

Primary 2004 x 2008/2004 factors	Primary 2008 PM ₁₀
=	=
0.73 x (0.850/0.930)	0.67

Then, calculate the secondary 2008 $\ensuremath{\text{PM}_{10}}$ concentration:

2001 Secondary x 2008 projection factor	Secondary 2008 PM ₁₀	
7.8 x 0.841	6.56	

The total 2008 PM_{10} concentration ($\mu g/m^3$) is therefore:

2008 Primary + 2008 Secondary + Coarse	Total 2008 PM 10
0.67 + 6.56 + 10.5	17.7

To calculate Total 2013 PM₁₀ Background:

Secondary 2010 = 2001 Secondary x 2	
Secondary 2010	6.2
- Sacandary 2010	6
Coarse	1
Total 2010 (mapped)	

Now adjust the Primary 2010 PM_{10} concentration to 2013 using the 2010 and 2013 adjustment factors:

Primary 2010 x 2013/2010 factors	Primary 2013 PM ₁₀
=	=
0.3 x (0.794/0.815)	0.29

Then, calculate the secondary 2013 $\ensuremath{\text{PM}_{10}}$ concentration:

2001 Secondary x 2013 projection factor	Secondary 2013 PM ₁₀
7.8 x 0.795	6.20

The total 2013 PM_{10} concentration ($\mu g/m^3$) is therefore:

Total 2013 PM 10	2013 Primary + 2013 Secondary + Coarse	
17.0	0.29 + 6.2 + 10.5	
17.0	0.23 + 0.2 + 10.3	