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Terms of Reference 

The Air Quality Expert Group (AQEG) is an expert committee of the Department for 
Environment, Food and Rural Affairs (Defra) and considers current knowledge on air 
pollution and provides advice on such things as the levels, sources and characteristics of air 
pollutants in the UK. AQEG reports to Defra’s Chief Scientific Adviser, Defra Ministers, 
Scottish Ministers, the Welsh Government and the Department of Agriculture, Environment 
and Rural Affairs in Northern Ireland (the Government and devolved administrations). 
Members of the Group are drawn from those with a proven track record in the fields of air 
pollution research and practice. 
AQEG’s functions are to: 

1. Provide advice to, and work collaboratively with, officials and key office holders in 
Defra and the devolved administrations, other delivery partners and public bodies, 
and EU and international technical expert groups; 

2. Report to Defra’s Chief Scientific Adviser (CSA): Chairs of expert committees will 
meet annually with the CSA, and will provide an annual summary of the work of the 
Committee to the Science Advisory Council (SAC) for Defra’s Annual Report. In 
exception, matters can be escalated to Ministers; 

3. Support the CSA as appropriate during emergencies; 
4. Contribute to developing the air quality evidence base by analysing, interpreting and 

synthesising evidence; 
5. Provide judgements on the quality and relevance of the evidence base; 
6. Suggest priority areas for future work, and advise on Defra’s implementation of the 

air quality evidence plan (or equivalent); 
7. Give advice on current and future levels, trends, sources and characteristics of air 

pollutants in the UK; 
8. Provide independent advice and operate in line with the Government’s Principles for 

Scientific Advice and the Code of Practice for Scientific Advisory Committees 
(CoPSAC). 

Expert Committee Members are independent appointments made through open competition, 
in line with the Office of the Commissioner for Public Appointments (OCPA) guidelines on 
best practice for making public appointments. Members are expected to act in accord with 
the principles of public life. 
 
Further information on AQEG can be found on the Group’s website at: 
https://www.gov.uk/government/policy-advisory-groups/air-quality-expert-group  
and https://uk-air.defra.gov.uk/research/aqeg/ 
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Statement on integration and adoption of 
AI in air quality 
Summary 

The field of Artificial Intelligence (AI) has evolved significantly over recent years, with 
increasing availability of underlying methodologies and adoption across academia, the public 
and private sectors. This coincides with increased public discourse around AI and the 
potential opportunities and potential dangers posed, partly driven by the public release of 
facilities such as ChatGPT and the creation of national and international forums around 
regulation and safety.   

In parallel, increasing diversity in air quality sampling and simulation technologies, combined 
with the need for integration with complex health and socio-economic outcomes, positions 
air quality science and policy as a potential user of AI tools. With this in mind AQEG 
considers the utility of Artificial Intelligence (AI) and associated innovation landscape whilst 
considering risks and sustainable mechanisms for use. 

The report differentiates between Artificial Intelligence (AI) as a goal of autonomous 
intelligence, Machine Learning (ML) as a subset of AI that concerns development of 
algorithms to extract meaning from data and Data Science as the broader umbrella that 
encapsulates AI, ML and includes consideration of regulation, standards and ethics. Within 
the remit of this report and at the time of writing, the majority of air quality exemplars use 
machine learning (ML). Evidenced benefits of ML for air quality include development of new 
methods to infer contributions from different emissions to measured instrument response, to 
development of causal inference of policy change. In addition, service-driven industries are 
rapidly adopting ML tools within their data pipelining, including air quality instruments. Data 
driven models offer a route to mitigate traditional challenges of computational resource 
barriers in regional to global air quality models. AQEG foresee use of time-series forecasting 
from single sites or networks through to development of personal exposure estimates built 
around mobility data. It is widely accepted that the pathway to increased model resolution 
and integration of increasing amounts of data can only be met through inclusion of machine 
learning approaches. National research centres and laboratories are already reframing 
existing models with this in mind. 

Despite the dominant current use of isolated ML in air quality there is significant potential 
offered by AI. This includes the use of Digital Twins in automated systems management and 
the application of Foundational Models. A Digital Twin might use near real-time data to 
change the state of the system being studied in advance of a desired outcome. This 
feedback mechanism separates a Digital Twin from a Digital Shadow, or Digital Model (as 
considered in a traditional modelling sense); digital twins may require support 
communications infrastructure, cyber security and so on. Foundational Models have rapidly 
entered the public domain following the public release of the ChatGPT variants by OpenAI, 
with parallel responses by other vendors including Google, Meta and IBM. These large 
models, trained on vast quantities of unlabelled data, replace task specific models and are 
able to adapt to more generic use cases. Geospatial Foundational Models are now used to 
understand the impacts of extreme weather events such as predicting the extent of flooding 



 7

and forest fires. It is likely only a matter of time before they are applied to global air pollution. 
This may change the balance between services offered and maintained between the public, 
private and academic sectors.  

Quantifying the success of AI adoption requires first for a clear strategy to be defined. This 
should identify where existing operations might benefit from potential use of AI technologies 
and create a value proposition with a range of stakeholders. This co-design with 
stakeholders could benefit government departments for a number of reasons including 
building trust, maintaining sustainable partnerships and positioning government at the 
forefront of discussions around standards and regulations. A strategy around adoption and 
use should also clarify a governance structure which goes beyond awareness of the IT or 
digital tools to definitions of roles and responsibilities on staff, operations and relationships 
with AI technologies. The creation of an advisory board, for example, for cross sector 
partnerships around adoption of AI could be an effective vehicle to maintain an appreciation 
of the breadth of activity. Membership could include representations from cross government 
departments, academia and industry.  

Whilst regulation of AI is beyond the responsibility of a single organisation, there is strength 
in forming such partnerships across government departments, industry and academia. This 
is particularly important where the state-of-the-art can change in a short space of time along 
with calls for wider consensus around both regulation and standards. Partnerships with 
academia could usefully vary from individual secondments, joint PhDs through to co-funded 
programmes of development across e.g. UKRI.  The benefit of such arrangements includes 
increased external problem visibility and the opportunity for knowledge transfer around 
successful demonstrations of technologies and work practices. AQEG recognise the 
importance of engaging with the AI industry which is likely to act as a significant source of 
technical solutions at the environment-human health interface. 

Defra and Devolved Administrations should support staff to develop the necessary skills to 
be aware of, use and understand AI-driven technologies for air quality. Improved training 
could include joint programmes with HE institutions through to tailored training options 
provided by industry. Nurturing AI innovation for air quality science and policy, through 
partnerships with external organisations, would support a longer-term goal of attracting and 
retaining staff with AI skill sets. As with fluid movements around regulation and standards, 
retaining staff in the public sector is a much bigger challenge that would benefit from a 
collective vision across public sector organisations and academia. 

With all that in mind, the graduate workforce is likely to embrace data science as a core tool 
in the future. This will inevitably reduce the burden on organisations investing in targeted 
training. However, the need to provide an innovative and nurturing ‘AI aware’ environment 
will remain, with proposed activities and initiatives given in this report designed to facilitate 
this. By considering the issues raised in this report, we would support Defra and the DAs in 
their commitments to exploring the exciting opportunities offered by AI in managing and 
improving air quality whilst retaining and building public trust in the policy decisions that may 
emerge.  
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1. Introduction  
The field of Artificial Intelligence (AI) has evolved significantly over recent years with 
increasing availability of data science tools and methodologies and adoption across 
academia, the public and private sectors. There is use of a variety of AI approaches being 
applied across all scientific domains. With increasing diversity in sampling and simulation 
technologies, air quality data and modelling output exhibit widely varying features.  This 
varies from high resolution multivariate signals at a single location (such as a multichannel 
mass spectra) to satellite products or model outputs with lower temporal resolution but 
higher geospatial coverage. Combined with common challenges around standards, 
sustaining heterogeneous networks and the need to determine impacts of interventions and 
integration with health and socio-economic outcomes, this positions the combination of air 
quality science and policy as a natural target for the potential offered by AI. With the 
increased public discourse around AI and the potential opportunities and potential dangers 
posed, this statement recognises the challenges of managing adoption, integration and 
sustainable use of AI within Defra to support air quality improvements.   

Definition of some key terms:  

· Artificial Intelligence (AI) as a goal of autonomous intelligence, which could include 
data driven systems or simply rule-based systems;  

· Machine Learning (ML) as a subset of AI that concerns development of algorithms 
to extract meaning and build potential decisions around data;  

· Data Science as the broader umbrella that encapsulates AI, ML, and consideration 
of regulation, standards through to ethics (figure 1a).  

 

Figure 1: a) Data Science encompasses application and regulation of AI, built on Machine 
Learning algorithms which vary from traditional through to Deep Learning based 
architectures. b) The Data Science workflow, from data collection, EDA through to 
communications [O’Neil and Schutt, 2013].  

This distinction is important when the current use-cases in air quality science are placed in 
the wider context of public discourse around AI. With the emergence of digital facilities such 
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as ChatGPT from OpenAI (https://openai.com/), there is now widespread availability of AI 
tools not just within industry, but open to the general public at large. For example ChatGPT 
is a ‘large model’, specifically a Large Language Model (LLM) that has been expertly 
developed and trained around huge quantities of data. This LLM can respond to questions, 
appearing to offer ‘advice’ based on the contextual knowledge the model has been trained 
to. Whilst these models have been in development for some time (e.g. the model BERT was 
developed in 2018 (Devlin et al 2018)), ChatGPT demonstrates the impact of 
commercialisation for widespread use and will no doubt set the trend for emerging 
developments in this space. Since the release of ChatGPT, a number of industry giants such 
as Google, IBM and Microsoft have likewise positioned themselves to release a number of 
products in a short space of time. The consumer market is very fluid at the time of writing, 
with many digital consumer products offering AI enabled services as a positive development.  

 Large Language Models (LLMs) fall into a category of models known as Foundation 
Models, a set of tools we will revisit shortly when discussing potential future uses of AI with 
regards to air quality research and development (section 2). These tools represent the 
forefront of AI development, requiring certain levels of resourcing and skill sets to train and 
deploy. Despite these barriers, one would expect migration of such tools for use across the 
broader scientific spectrum following the typical technology ‘hype cycle’. Published every 
year, the Gartner hype cycle (figure 2) positions the state of a particular technology from its 
point of inception [left hand corner] through to widespread adoption [right hand side], 
passing through a peak of expectation before the true potential is evaluated.  Figure 2 
presents the 2023 Gartner hype cycle which places Foundational Models towards the peak 
of expectations and projects a time to reach widespread adoption between 2 to 5 years. This 
includes use by the research community.  
 

 

Figure 2: The 2023 Gartner Hype Cycle for Artificial Intelligence 
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Even without explicit use of Foundation Models by the wider research community these tools 
are already acting as aids in scientific workflows. For example, Github and Microsoft have 
released their own ‘CoPilot’, a tool to aid and generate code based on natural language 
requests which is significantly reducing the barrier for software development (e.g. 
https://github.com/features/copilot). This will inevitably accelerate the creation of new 
software and data analytics tools, in both academia and industry.   

The key distinction within the remit of this report is that the majority of air quality research, at 
the time of writing, showcases the use of machine learning (ML), which is a subset of AI. 
Machine Learning represents the act of training algorithms to predict or detect metrics of 
interest and ‘learn’ how features within a dataset (e.g. concentrations of different pollutants 
or channels in a mass spectra) relate to each other. For example, one might build a ML 
model for predicting concentrations of NOx as a function of time and traffic levels 
(regression), or assign an emission source to a measured mass spectra (classification). 
Machine Learning is an essential component of autonomous intelligence but does not by 
itself ensure this is achieved; a machine learning algorithm is developed/trained and then 
interpreted by an expert within their domain who may then create further information to build 
a decision or action around. A ML algorithm may be used automatically, for example to 
correct an instrument response into a concentration of pollutant onboard the instrument, but 
autonomous intelligence can act and dictate without our intervention. In later sections of this 
report there are instances of AI that are of direct relevance to air quality management.  

 

Figure 3: Example architectures of different machine learning frameworks - a) Random 
Forest [Khan et al 2021], where individual decision trees are built and then combined to 
produce an ‘optimal’ outcome, b) Deep Neural Network [modified from Ognjanovski, 2019] 
where an input array (left) is connected to a single output variable (label or number) via a 
series of connected layers, c) Long Term Short Term Deep Neural Network 
[e.g.https://www.techtarget.com/searchenterpriseai/definition/recurrent-neural-networks] 
where information in the sequence is exploited, d) Convolution Neural Network [e.g. 
modified from Fan and Truong 2022], where an 2D pixel matrix (left) is connected to an 
array of object labels (right) through a series of convolutional layers . 
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There are various families of ML algorithms. These include, for example, tree based 
methods through to deep learning (Figure 3). Choice of method depends on the question 
being addressed and the amount of data available. This can also be dictated by the need to 
understand what relationships have been learned by the ML algorithm and why.  For 
example, ‘explainable AI’ refers to the development of methods that aid this interpretation, 
driven by the growing need to ensure provenance in decisions made [Xu et al. 2019].  Deep 
learning became prominent across scientific research in the early 2000s as Graphic 
Processing Units (GPUs) were exploited for faster training to much larger quantities of data. 
For example, a deep neural network is a neural network with more than one layer (Figure 
3b); one can imagine each node (circle) on the left hand side of Figure 3b represents an 
ambient measurement and the single node on the right hand side the concentration of PM2.5. 
In this case the end goal may be to predict PM2.5 in the next hour as a function of weather 
and concentrations of other pollutants at the current time. Each node, and connections 
between the nodes, have parameters that are optimised through a training process. The 
number of layers, the number of nodes per layer and such parameters are known as 
hyperparameters.  If one was to replace the right hand node with the number of hospital 
admissions within the local area, or classification of ‘hazardous conditions’ for example, a 
expert user might start to connect data from multiple domains. Another family of deep 
learning methods, shown in figure 3c, accounts for the sequence of information provided.  

Thus the first example could be extended to predict PM2.5 in the next hour as a function of 
measurements taken over the last 6 hours. Computer vision techniques including 
Convolutional Neural Networks (CNN) (Figure 3d) have revolutionised several fields. CNNs 
are deep neural networks that learn how localised features within an image translate to key 
properties of that image. These can be used to downscale remote sensing products, for 
example, treating 2D fields of total column variables and meteorological fields to generate 
predictions at ground level. This report provides a brief synopsis of peer reviewed 
demonstrators of relevance in section 2.  

Overall, evidenced benefits of ML for air quality research include development of new peer 
reviewed research software tools designed to work across a number of scales; from new 
methods to infer contributions from different emissions to measured instrument response Lin 
et al. 2022], to development of causal inference of policy change [Song et al. 2022]. In 
addition, service driven industries are rapidly adopting ML tools within their data pipelining, 
including air quality instruments [Grant-Jacob and Mills, 2022].  

It must also be recognised that, more broadly, Data Science encompasses all facets of AI, 
ML through to best practices (Figure 1a). Scientific research has always relied on data, but 
there is now more focused attention paid to key components in the lifecycle of a data 
product from collection through to end user delivery. This includes training data scientists 
and engineers in Exploratory Data Analysis (EDA) techniques with the aim of identifying 
outliers, for example, and more broadly constructing an interpretation on the state of the 
data collected. Whilst most of the public discourse tends to be on ML algorithms and AI 
demonstrators, such as ChatGPT, there is an important AI ecosystem which is being 
mapped into academic training programmes and service industries. For example, Data-
Centre AI focuses on enhancing and enriching training data to drive better AI outcomes; 
Prompt Engineering concerns providing text or image inputs into generative AI models to 
optimise the response; Edge AI refers to the use of embedded AI on IoT endpoints such as 
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mobile phones or autonomous vehicles etc. Perhaps more importantly, Data Science also 
brings attention to regulation and standards.  With these developments in mind, one must 
recognise the importance of the wider ecosystem of digital tools, staffing and services to 
facilitate sustainable use of AI which are discussed in turn.  

In the following report AQEG briefly covers the documented uses of ML and potential uses 
of AI as relevant to air quality research and management (Section 2).  This is not intended to 
provide an exhaustive list of all activity in this space, but rather to provide referenced 
demonstrators. Emphasis is then placed on the required adoption of standards and 
governance to ensure trust in any adopted methodologies (Section 3). Whilst recognising 
that most, if not all, developments evident in the literature focus on applications of ML, there 
is no doubt that AI will infiltrate current ways of working as per the aforementioned hype 
cycle. Later AQEG consider a possible implementation strategy that requires further scoping 
and co-design with relevant stakeholders with regards to internal operations (Section 4). 
Explicit adoption of technologies held under the banner of AI will require understanding 
dependencies on data streams, data preservation and access to appropriate computing 
services which can be constructed through subsequent architectural designs.   

 

2. Existing and potential use cases 
Growing evidence in the scientific literature already demonstrates the potential uses of 
machine learning (ML) in air quality research, from real time data integration through to 
regional and global modelling. Whilst there is no clear adoption of these tools in operational 
air quality forecast services, or even standardised approaches for data analytics used across 
the community, it is likely that developments will move towards adoption as standard. With 
this in mind, the following section discusses specific areas of evidenced use that could be of 
interest to Defra and the DAs, and highlights future developments that are likely to emerge 
across the landscape of AI innovation, including Foundational Models and Digital Twins. 
Subsequent requirements of the supporting ecosystem, from standards to training, are 
described in section 3. Potential use cases are for measurements and modelling are 
included, with some discussion of the potential role for integrating unstructured data from 
social media, public interactions through to policy reviews. This is not designed to act as an 
exhaustive list of all activities, but provides relevant examples where the size and 
characteristics of generated data vary significantly, from individual sensors that provide high 
frequency time series datasets to hybrid global models that produce huge volumes of 3D 
geospatial data.  

2.1 Measurements.  

Generating insights from measured and laboratory-controlled data requires a combination of 
statistical and, often, ML methodologies built on top of robust EDA protocols. Modern 
sampling methods used in air quality monitoring can produce huge quantities of multivariate 
data including high resolution mass spectral through to optical signatures, including 
scattering and holographic images.  
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Classification:  

Several ML methods are used to infer contributing sources from measured signatures that 
fall under the remit of unsupervised, supervised and semi-supervised machine learning. 
Briefly, unsupervised learning algorithms are designed to extract patterns and meaning from 
unlabelled data. For example, ambient time series of pollutant concentrations can be fed into 
unsupervised clustering algorithms to determine distinct contributions such as wood burning, 
diurnal patterns and so on. Supervised learning algorithms are trained to detect known 
patterns, or labels, once trained to that labelled data. For example, we might use a neural 
network to classify a scattering image into known types based on controlled laboratory 
studies. Those algorithms can then be applied to ambient data. Supervised algorithms, 
particularly neural networks, often require large quantities of data to build acceptable levels 
of accuracy. As generating controlled data can be a challenge, semi-supervised methods 
can be used to learn relevant underlying features from much larger quantities of ambient 
data before being tuned to the small amount of labelled data available [e.g. Gilik et al. 2022]. 
Combined with controlled laboratory studies, these methods have been used to quantify 
changes to measured signals and thus contributions from different emission sources. In 
Example 1 the use of supervised deep learning algorithms is applied to real time holographic 
images (as a classification problem). In Example 2 the use of supervised tree based 
methods is used to build a model to predict pollutant concentrations as a function of 
meteorology and time (as a regression problem), with the aim of applying weather 
normalisation.  

Example 1: Detecting and classifying bio-aerosol  

The Swissens Poleno uses a combination of classical image analysis and a deep neural 
network algorithm to identify a range of pollen taxa. Deterministic criteria based on the 
shape of the particles are used as a first step before images are processed through a trained 
Convolutional Neural Net (CNN). The figure below provides a schematic of both stages, 
showing that the architecture of the CCN used was based on an industry standard known as 
VGG16 which has 16 hidden layers. The pretrained industry standard VGG16 model was 
trained to millions of images and is used for several object detection tasks [Simonyan and 
Zisserman, 2015].  

 

Figure 4: Classifying pollen particles through deep learning leading to generation of real time 
concentrations [Sauvageat et al, 2020]. 
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Weather normalisation and changepoint detection:  

Attributing changes in measured pollutant concentrations to natural conditions or technical 
interventions often requires weather normalisation combined with change-point detection. 
Weather normalisation concerns the process of fitting a model to predict a measured 
pollutant concentration as a function of meteorological variables and time. This is an 
example of ML regression where one temporal feature includes a trend term (e.g. unix time). 
By sampling the fitted model around typical conditions for a given time of day/year, but 
keeping the trend term, one can create a ‘clean’ dataset from which changes in the 
underlying trend can be evaluated. Attributing changes in the trends to policy interventions, 
for example, can be done through expert interpretation or through changepoint detection 
methods. Even with a changepoint detection method, expert interpretation is often needed to 
attribute detected points to expected changes.  

Example 2: Policy intervention detection. 

Figure 5 shows the measured (left) and weather normalised (right) NOx and NO2 at London 
Marylebone Road between 1997 and 2016. The weather normalised values were calculated 
by 50 random forest models (for each pollutant). The vertical lines show the changepoints 
identified by structural change analysis [Grange and Carslaw, 2019] which were found to 
match known interventions. The authors also note, in many cases there may not be 
sufficient information or metadata to help explain the changes observed.  

 
 

Figure 5: Raw times series for both NO2 and NOx (left) compared with the weather 
normalised concentrations (right) [Grange and Carslaw, 2019]. 

2.2 Models. 

Traditional numerical models of air quality are built on underlying parameterisations of 
pollutant emission, along with physical and chemical processes that simulate dispersion and 
evolution. A translation of that science through to code is then coupled with a strategy for 
solving coupled and decoupled equations to deliver predictions of pollutant concentrations 
over space and time. The computational challenges of solving many types of equations and 
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tracking concentrations across a 3D space, for example, can lead to a range of model scales 
from street level through to global. These scales can likewise be coupled in a variety of ways 
to improve broader understanding of regional to local drivers. These models have supported 
decades of regulatory assessments, supported by a huge collection of scientific studies 
investigating the impacts of newly identified physical processes, emission sources and so 
on. The challenges of developing and running these models include access to high-
performance computing (HPC) systems and wider understanding of the software 
engineering required to deploy, maintain and interpret these tools.  Data driven models offer 
a route to mitigate some of these challenges by utilising developments in open-source 
programming environments and accessible computing hardware.  For example, this includes 
time-series forecasting from single sites or networks. Data driven models also offer a route 
for including data that is pertinent to the air quality outcome but would otherwise be difficult 
to include within traditional frameworks. For example, this includes development of personal 
exposure estimates built around mobility data. Even with access to HPC resources, model 
frameworks are having to change to meet requirements of high resolution. Figure 6 displays 
a schematic from a seminal review of next generation earth system models [Reichstein et al. 
2019]. The key message here is that the path to increased resolution, fidelity and integration 
of increasing amounts of data can only be met through inclusion of machine learning 
approaches in regional to global models. Moving towards development of AI for air quality 
modelling and management we see potential in the use of Digital Twins in automated 
systems management and the rise of Foundational Models.  
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Figure 6: Four examples of typical deep learning applications (left panels) and the 
geoscientific problems they can be applied to (right panels) [Taken from Reichstein et al. 
2019]. 

Time-series forecasting  

Time-series forecasting methods explicitly account for information held within the sequence 
of measured data. These are typically built and optimised to measured or synthetically 
generated data, rather than on an architecture and model parameters built on underlying 
physics or chemistry. The most common use case in air quality is the development of time-
series forecasting tools. Combined with best practices around data cleaning and 
preprocessing, there is evidenced potential for predicting future change from measured data 
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[Liu et al. 2021], which includes differentiating the impact from changes in weather versus 
transport interventions [Sulaimon et al. 2022].  

Personal exposure estimates 

Agent-based models have emerged across a number of scientific domains. These models 
create agents that have pre-determined characteristics and thus ‘interact’ with other agents 
and a model environment. These models are clearly relevant to predicting personal 
exposure under different microenvironments, provided data on mobility and behaviour 
response can be generated and then used to fit the relevant model. In response to the 
COVID19 pandemic, for example, the SPENSER model was used to predict where people 
might spend their time by LSOA [Spooner et al. 2021]. Once mapped to pollutant fields and 
concentrations in different environments, estimates of total exposure can be created. 

Example 3: Predicting personal exposure by microenvironment. 

 

Figure 7: Proportion of time spent by simulated individuals from Greater Manchester within 
different micro-environments (Home, Indoor-not-home, Outdoor, Transport and Unknown 
locations), by age and gender [Thomas et al. 2022].  

The Data Integration Model for Exposures (DIMEX) integrates data on daily travel patterns 
and activities with measurements and models of air pollution using agent-based modelling to 
simulate the daily exposures of different population groups [Thomas et al. 2022]. Figure 7 
shows predictions of time spent in different microenvironments. When combined with diurnal 
patterns of pollutant concentrations in those environments, these models are able to 
generate predictions of total exposure.  

Downscaling  

Integrating remote sensing data with model and ground-based data offers the potential to 
provide estimates of air quality in poor sampled areas. There are a number of challenges in 
performing such an integration, not least related to the variable characteristics each data 
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contains. This includes sparse ground based measurements with high time resolution to 
remote sensing products with a daily total column observation. Nonetheless, computer vision 
techniques including CNNs are often used to develop regression models that are trained to 
predict concentrations as a function of land-use, remote sensing product and meteorological 
fields. There is also use of random forest models with the same aim in imputing data in 
areas with poor sensor coverage. Downscaling can also be applied directly to model output 
with the aim of increasing the resolution for a fraction of the cost of running very high 
resolution models.  

Example 4: Downscaled predictions of atmospheric composition 

Geiss et al. (2022) used CNN based super resolution to downscale atmospheric chemistry 
simulations using physically consistent deep learning.  Single-image super resolution (SISR) 
artificially enhances the resolution of images after they are captured.  Following the training 
of a CNN for downscaling, the idea is that a user can generate coarse simulations at 
relatively low computational cost. Model ensembles are an ideal use case for this 
application, where a large number of high-resolution simulations is too resource-intensive to 
complete. In this study the authors found SISR methods that incorporated high-resolution 
climatological data performed significantly better than those that did not when compared with 
high resolution models. 

 

Figure 8: Predictions of PM2.5 (top row) and O3 concentrations (bottom row). The left column 
shows the coarsened data, the middle column shows the super-resolved output from the 
best-performing CNN, and the right column shows the ‘ground truth’ from the high resolution 
model [Geiss et al. 2022]. 
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2.3 Emerging technologies 

Physics-informed machine learning  

Retaining the numerical basis of existing global models whilst increasing the 
physical/chemical complexity they represent requires improvement in computational 
efficiency of the solution process. It is common to integrate a complex process into existing 
geospatial models through the process of parameterisation. In emerging numerical model 
developments traditional numerical methods are replaced with hybrid process level-ML 
frameworks to mitigate this challenge. With concerns around explainability of AI systems, 
there is movement towards applying physics informed machine learning [Karniadakis et al 
2021], where the underlying physics/chemistry of the problem at hand constraints and 
improves the behaviour of the data driven component (e.g., Neural Ordinary Differential 
Equations). This offers significant potential to inform the development of next-generation 
regional models, for example, where heterogeneous data streams and environmental/urban 
infrastructure could be used to improve forecasts of emerging events.  These hybrid “physics 
informed” approaches could improve trust in new predictive systems and allow us to adapt to 
emerging data streams.   

Digital Twins  

Digital Twins are emerging as the next generation of digital simulation tools across multiple 
domains. Whilst existing numerical models allow a user to determine the potential 
concentration changes of e.g. an emission reduction, or data driven time-series forecasting 
tools to predict potential impacts of a traffic intervention, a Digital Twin would use near to 
real-time data streams to change the state of the system being studied in advance of a 
desired outcome. The key distinction between a Digital Twin and Digital Shadow (see Figure 
9) is this feedback mechanism. Digital Twins have been used predominantly in applications 
of engineering up to this point. Despite evolving narratives around potential use of Digital 
Twins, there are some clear potential use cases. This could include, for example, optimal 
management of traffic systems to reduce concentrations of pollutants, or optimal control of 
building ventilation systems to reduce personal exposure from indoor-outdoor sources. A 
Digital Twin is thus built around feedback loops to build automated decision support 
systems, requiring consideration of real time communications and data security (see section 
3).  
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Figure 9: Data flow in digital models, digital shadows, and digital twins [Nikula et al 2020]. 

Foundation models  

Foundation Models have rapidly entered the public domain following the public release of 
the ChatGPT variants by OpenAI, with parallel responses by other vendors including 
Google, Meta and IBM [https://research.ibm.com/topics/foundation-models]. These large 
models, trained on vast quantities of unlabelled data (Figure 10), replacing task specific 
models and are able to adapt to more generic use cases. More specifically, in the discussion 
of ML models up to this point, normally an input is provided with a specific output as the task 
(e.g. predicting PM2.5 classification as a function of optical image). The data used to train ML 
models are restricted to certain types, for example a collection of ambient or lab generated 
optical images. Foundational models on the other hand can train on vast amounts of 
unlabelled data with varying types. The goal is that, through self-supervised learning, these 
frameworks begin to learn patterns and relationships within that data. From this learning they 
are then able to respond to multiple queries. This includes several tasks such as responding 
to user requests for summaries of large quantities of published evidence or augmenting the 
software development processes through automatic code generation. Geospatial 
foundational models are now being developed to ingest remote sensing data to underpin 
efforts to understand impacts of extreme weather events, such as predicting the extent of 
flooding and forest fires [https://research.ibm.com/blog/geospatial-models-nasa-ai].     
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Figure 10: A foundation model can centralize the information from all the data from various 
modalities. This one model can then be adapted to a wide range of downstream tasks. 
[Bommasani et al. 2021]. 

2.4 Behavioural change, reporting and policy 
development. 

Aggregated air quality data can exhibit the three characteristics of ‘big data’: large volume, 
high velocity and large variety. More specifically, existing monitoring networks could enable 
data sharing and ingestion from high resolution multivariate instruments. This data could be 
coupled with data streams from networked IoT devices, remote sensing platforms and 
growing focus on air quality policies across social media platforms. The combination of each 
data stream is of course dependent on the question being answered, where individual 
projects may focus on each in isolation (see above). However, there is potential for a 
collective understanding and improved outcomes by considering the combination of 
unstructured data in detecting responses to and perceptions of interventions or naturally 
occurring events.  Natural Language Processing (NLP) paired with social media analysis can 
detect behavioural changes and reactions to environmental stressors [Hodorog et al. 2022]. 
This can include monitoring local responses to a number of interventions. These tools have 
evaluated public reactions to natural hazards [Vongkusolkit and Huang, 2021], 
demonstrating their utility in adding supporting information to observations of evolving real 
time events. Studies on air quality using NLP have shown the capability to connect citizen 
observations with air-quality variations [Juanals et al. 2018]. This includes an assessment of 
sentiment responses in social media, which may provide valuable insights into how 
communities respond to interventions and adapt to evolving environmental conditions.  
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3. Implementation Strategy:  
As developments and demonstrations of AI-machine learning within air-quality research and 
services continually evolve, such tools are likely to become a core component of the 
standard air-quality data lifecycle. As already presented in section 2, there are demonstrable 
benefits across academia and industry around adoption of machine learning.  

An implementation strategy for any group or organisation lays the ground for integration and 
adoption of AI, whilst being agile to developments from a range of sectors and requirements 
around standards and regulations.  

The initial step in any implementation strategy is to iteratively create a strategy around 
adoption and use. This strategy requires identifying where existing operations will benefit 
from potential technologies and creating a value proposition with a range of stakeholders. 
Some of those benefits are listed in section 2. An approach of co-design with Defra 
stakeholders is important for a number of reasons, including building trust, maintaining 
sustainable partnerships and positioning Defra at the forefront of setting standards. Co-
design mechanisms could form a number of specific auditing and workshop exercises. For 
example, the US Food and Drug administration has issued an initial discussion paper to 
communicate with a range of stakeholders in its drive to develop an ‘agile regulatory 
ecosystem that can facilitate innovation whilst safeguarding public health’ [FDA, 2023a]. 

The following sections reflect on the fluid state of AI regulation (section 3.1) before 
commenting on the value of partnerships across government, academic and industry to 
develop several activities that would improve internal awareness and involvement in the AI 
landscape (section 3.2). This is then aligned with a discussion of training needs and 
sustainable use (section 3.3).  

Beyond the areas briefly covered in sections 3.1 - 3.3, a strategy around adoption and use 
should also clarify a governance structure which goes beyond awareness of the IT or digital 
tools to definitions of roles and responsibilities on staff, operations and relationships with AI 
technologies. There are several international models of governance that would be useful to 
review, an example being the Singapore AI governance structure 
[https://www.pdpc.gov.sg/Help-and-Resources/2020/01/Model-AI-Governance-Framework] 
that covers development of an advisory council, research programme and providing 
guidance to businesses in adoption of appropriate best practices.  

3.1 Regulation: 

Regulation of AI, and thus implementation of ML, is a fluid area of development both 
nationally and globally. The UK hosted the AI safety summit in November 2023 which aimed 
to bring together international governments, AI companies, academics and civil groups to 
consider the risks of AI and appropriate mitigation. There have been mixed reviews 
surrounding the outcomes of this event 
(https://www.theguardian.com/commentisfree/2023/oct/31/rishi-sunak-ai-safety-summit-tech-
challenges), but the narrative around safety and this regulation is becoming more widely 
presented.  The latest McKinsey Global Survey on the current state of AI [McKinskey, 2023] 
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shows many organisations are not yet addressing potential risks from generative AI, with 21% of 
survey respondents noting their organisation had now established policies governing employees 
use of generative AI technologies in the workplace. This might cover; from generating reports, 
developing technology roadmaps and even automating data analytics.  This will be partly linked 
to a lack of understanding on potential uses of such technologies and the speed at which 
solutions can be built around them. Previous reports published by the AI Council note that the 
UK will only feel the full benefits of AI if all parts of society have full confidence in the science 
and the technologies, and in the governance and regulation that enable them [AI Council 
Roadmap, UK].  Whilst conversations around regulation are often associated with assumed 
restrictions on innovation [e.g. https://www.forbes.com/sites/jackkelly/2023/06/05/artificial-
intelligence-is-getting-regulated/?sh=5c96f6fb7a09], there are growing calls to clarify this 
does not have to be the case [Ada Lovelace Institute, 2021].  

From the perspective of air quality there is benefit to be had by joining relevant 
conversations around regulation for internal and external use, even if the responsibility for 
setting regulatory procedures is positioned at both higher levels of government and different 
contributors to the air quality data lifecycle (e.g. instrument vendors, research modellers etc). 
Given the evolving public perceptions around the use of AI in particular, there are a series of 
mechanisms by which Defra might look to champion both regulation and innovation jointly 
with other government departments and with the research community.  It is particularly 
important to support the development of innovative, safe, technological solutions to 
improving outcomes from air quality management given the social drivers surrounding the 
science of air quality. One might consider a future example of Digital Twin of a transport 
system, designed to improve air quality, inadvertently increasing emissions through low 
income neighbourhoods. An appropriate analogy around access and adoption of digital tools 
(not just AI) includes challenges around the performance of low-cost sensors, an ongoing 
area of research and development. This may require annual reviews of sampling and 
modelling technologies. Using the US FDA as an example, a recent report on medical 
devices notes that ‘As of October 19, 2023, no device has been authorized that uses 
generative AI or artificial general intelligence (AGI) or is powered by large language models.’ 
[FDA, 2023b]. As far as one can understand, there is no clear review of relevant air quality 
sampling technologies and services at the time of writing.  

Even if a strategy is focused solely on maintaining awareness of AI technologies, external 
changes in the underlying data sources (e.g. monitoring networks and model outputs) and 
supporting data ecosystems (data curation through to standards) to match AI regulation 
have a global scale, far beyond the responsibility of a single organisation. For example, 
concerns around the provenance around ‘pure machine learning’ based models has led to 
development of physics informed machine learning models to ensure provenance in 
decisions made [Karniadakis et al. 2021, Kashinath et al. 2021]. In these frameworks, a 
machine learning model is constrained by the underlying physics of the system. Adoption of 
these tools requires the research community to redevelop software tools to meet these 
requirements. With this in mind, both academia and industry are adopting a range of 
technologies that will impact both data and modelling tools available for use in Defra and 
more widely in the consulting and academic sectors.  
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Whilst regulation is an agile area of development there is strength in forming partnerships 
across government departments, industry and academia to better understand and inform AI 
regulations around the current state of monitoring and modelling technologies.  

Alongside future regulations that will set mandatory requirements around the use of AI, there 
are ongoing conversations around developing standards. Technological standards from an 
air quality management perspective are not new; a previous AQEG report (PM 
measurement  technologies, 2024] summarised the development and adoption of e.g. 
INSPIRE standards through regulatory monitoring networks [INSPIRE], with a recognition of 
ongoing challenges around components such as meta-data standardisation. AQEG 
recognise that technological standards surrounding AI are equally important, covering areas 
including data interoperability, model evaluations and so on. However, non-technical 
standards are equally important if somewhat less obvious when planning implementation of 
technical solutions. This includes ethical standards and social-cultural standards [e.g. Auld 
et al. 2022]. These aim to ensure the benefits of AI respect cultural nuances and ensure 
benefits are realised regardless of socio-economic status and cultural background. Whilst 
there are no universally accepted standards that work across all domains, AQEG would 
recommend a clear commitment to co-designing plans that move towards clarity around the 
development and use of relevant standards internally and through Defra managed networks.   

As regulation and standards continue to evolve, there are several components of the air 
quality data lifecycle that Defra could act to support/champion in readiness for these and 
further AI developments. These are briefly listed below under data and software 
accessibility, data and software protection and method evaluations. These are highlighted as 
essential to developing a robust platform on which to develop partnerships around regulation 
and innovation as mentioned previously.  

o Data and software accessibility: There have been significant advances in open 
data access. This is, in part, forced by a requirement to make data open access after 
a limited embargo period if generated through public research funding. Whilst there is 
no guarantee the same can be found for privately managed networks, there has 
been a cultural shift to adopt open science practices that include generating open 
software and releasing open data, supported by a range of open licensing options. 
FAIR data are data which meet principles of findability, accessibility, interoperability, 
and reusability [Wilkinson et al. 2016]. FAIR principles for software have been 
proposed [Barker et al. 2022]. Both are examples of initiatives that encourage open 
collaboration but are also key components in ensuring trust in actions made through 
adoption of data or implementation of software. Making data and software open 
access is perhaps the first step in ensuring readiness for incoming standards and 
then regulations around AI. There has been a ‘reproducibility crisis’ within the field of 
AI, driven in part by lack of data and software sharing [Ball, 2023].   

Whilst providing open data and software is an important first step, it does not 
guarantee it is either discoverable or usable by other end users [Weerakkody et al. 
2017]. Here we see the importance of maintained data platforms and clear meta-data 
that enables other users to understand the remit of the provided product. In other 
disciplines, particularly the biosciences, there has been development of workflow 
management software. These are tools that allow an end user to not only visualise 
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the steps used to generate the data, or run a model, but to repeat that process 
through a series of interactive steps. Defra may wish to conduct an audit of available 
datasets already in operation, including an evaluation of alignment with FAIR 
principles, and mapping those on to existing processes. This would allow an 
assessment of further development and support needed to improve readiness for the 
use of such data in the AI and air quality landscape.  

Machine learning tools are built on data that represents a given system or process. 
With regards to air quality, this could include a mass spectral dataset of multiple 
emission sources or 3D model output from a regional model study on reduction in 
ammonia emissions. Defra could also help champion the need for better availability, 
and maintenance, of labelled datasets. This refers to the process of labelling, or 
tagging, a subset of a dataset that represents a source, change or fingerprint. In the 
wider AI community these central datasets are a key feature in the innovation 
landscape, with annual competitions based and judged against these facilities. At the 
time of writing there are no clear repositories that provide labelled air quality datasets 
on which to build machine learning tools that have clear provenance. This is partly 
driven by the nature of research funding. Championing and supporting such a facility 
would position government as a key enabler in the AI and air quality landscape. This 
is referenced within section 3.2 and 4 on partnerships and potential measures of 
success.   

o Data and software security: Reference has been made to several emerging 
technologies, including Digital Twins. These tools could, in principle, connect 
incoming data streams to automated decisions around, for example, traffic flow or 
building ventilation. Several studies have now inferred the influence of ‘bad actors’ in 
some countries where networked data is used to influence resource management. 
Where there is dependency on near real-time data to automate decision support 
systems, one can imagine a number of scenarios that require stringent cyber security 
to be in place. This is a complex area, but would likewise benefit from an audit of 
existing monitoring systems in place and the range of cyber security standards.  
Detecting the influence of bad actors on decision support systems can also be 
influenced by choice of machine learning algorithm on which such systems are built. 
Some algorithms are easier to interrogate than others and thus discover the 
influence of bad/suspect data. For example, this includes the ability to relate changes 
in a forecast property (concentration) to previously sampled data which can then be 
verified separately through expert interpretation.  

Trusted Research Environments (TREs) are data storage and analytical 
environments that host sensitive data. A federated TRE landscape exists across the 
UK, where individual patient data, for example, are maintained by separate health 
authorities. There are wider national movements around standardisation of TREs 
(SATRE), with emerging open standards that define whether a system meets the 
criteria of a TRE. Health data cannot leave a TRE; rather ancillary data has to be 
ingested into a TRE for subsequent analysis. For example, this could include 
ingestion of environmental data within a TRE to determine the importance of 
residential postcode on disease outcomes. Whilst environmental data by itself does 
not require a TRE, we can imagine a future scenario where air quality data could be 
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used to infer human behaviour. This is particularly evidenced in the indoor air quality 
domain where concentrations could be combined with other products to determine 
where an identified individual spends their time. This may require the adoption of 
TRE standards within the air quality space which, in turn, requires an understanding 
of air quality data characteristics that would align with a TRE environment. 

It is appropriate to also consider the ethical implications around the use of AI. In all domains 
this covers issues around bias, fairness, transparency and privacy. Within the domain of air 
quality management this includes mitigating impacts of decision systems that create 
problems in low-income neighbourhoods, for example.  We know that digital literacy is a 
heterogenous problem across the UK [ONS, 2019], creating a dependency on access and 
interpretation of tools developed. This may also align with sparse coverage of tools and 
technologies in poorly monitored areas. All of these factors should be considered when 
developing a strategy for AI adoption.   

3.2 Collaboration, Partnerships and 
Stakeholder engagement:  

The potential utility of AI across wider environmental and public sector bodies presents an 
opportunity to form lasting collaborative partnerships and share lessons learned. This is 
particularly important in a rapidly evolving environment where the state-of-the-art can 
change in a short space of time and there is a need for wider consensus around regulation 
and standards. This could extend to formation of partnerships with international allies. 

Partnerships with academia could usefully vary from individual secondments, joint PhDs 
through to co-funded programmes of development across e.g. UKRI.  The benefit of such 
arrangements, though varying in size and capacity, is placing Defra as the problem holder 
but also offers the opportunity for knowledge transfer around successful demonstrations of 
technologies and work practices. This also benefits from the growing momentum across 
academia to adopt and evaluate a range of machine learning solutions relevant to the air 
quality domain. This is partly fuelled by the improvement in accessibility of the software and 
programming environments that underpin such tools, coupled with an increasing number of 
graduate learning opportunities that support uptake and deployment. It should also be noted 
that, through these partnerships, focus should also be given to the underlying infrastructure 
(data and software accessibility) which is not in an optimal state. Readiness for regulation 
and standards would be improved by ensuring resources are given to such matters.  

It is also important to engage with the AI industry which is likely to act as a significant source 
of technical solutions at the environment-human health interface. For example, the recent 
announcement of a Digital Twinning of the Earth demonstrates the potential future service 
offering from technology providers; the development of strong science-technology 
partnerships key to avoid unintended consequences of change and retain public trust in 
proposed solutions. Defra could act as a gateway, or identified end-user, to relevant data on 
which such services are built. There are similar partnerships between, for example, 
Foundation Data Lab Europe, NVIDIA and the European Space Agency 
[https://nvidianews.nvidia.com/news/nvidia-announces-digital-twin-platform-for-scientific-
computing]. Likewise, the partnership between NASA and Space-X demonstrates the 
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recognition of joining forces where problem holders can benefit from interaction with 
organisations with higher financial agility and workforce skill sets.  

The creation of an advisory board for cross-sector partnerships around adoption of AI could 
be an effective vehicle to maintain an appreciation of the breadth of activity. Membership 
could include representations from cross government departments, academia and industry 
with clear terms of reference around mapping successful adoption and management of the 
broad AI ecosystem.  

3.3 Skills, Training and Sustainability:  

Here AQEG consider how Defra and the DAs can enable their staff to develop the necessary 
skills to be aware of, use and understand AI driven technologies in an air quality context. 
The broader ‘AI driven technologies’ expression is used here to reflect the fact that much of 
the current developments in the air quality space are centred around the use of machine 
learning, whilst there is appropriate attention to the use of generative AI [e.g. ChatGPT] in 
the media. Generative AI, including tools such as ChatGPT, is very much at the cutting 
edge. There is value, however, in development of training programmes around the 
foundations of AI, from different types and applications of machine learning through to best 
practices around evaluating and interpreting models, meta-data standards and open 
science.  In other words, the development of new tools for forecasting air quality and 
detecting the impact of interventions, for example, will remain as emerging research 
methodologies for some time as the community migrates these into operational models.  

Improved training could include the following initiatives: 

o Joint training programmes with HE institutions. There has been a significant growth 
in data science masters programmes across the UK; many of which involve public 
and private sector partners to define problem lead activity.  Doctoral Training 
programmes may offer part time positions for existing employees to attain a PhD in 
data science. A number of international Universities provide free course content 
alongside recorded lectures.  

o Tailored training options. There is a significant number of MOOC courses available 
now, with a low-cost entry point. Technology partners also offer very popular zero 
cost training portals where employees can build a personal portfolio of AI training. 
This includes, for example, the NVIDIA Deep Learning Institute 
(https://www.nvidia.com/en-us/training/). Microsoft have created the OpenDS4all 
(Open Data Science for all) programme which is built around a set of foundational 
concepts designed to upskill organisations around data science and cloud 
technologies.  

Improved appreciation of potential uses could benefit from interaction with the broader AI 
community through joint workshops, literature reviews and targeted research programmes. 
Nurturing AI innovation within the department, and through its partnerships with external 
organisations, would support a longer-term goal of attracting and retaining staff with AI skill 
sets. As with fluid movements around regulation and standards, retaining staff in the public 
sector is a much bigger challenge that would benefit from a collective vision across public 
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sector organisations and academia. Indeed, recent reports highlight the need for improving 
digital skills across the public sector. This runs in parallel with the ‘digital divide’ across the 
UK public, which of course has implications on the widespread adoption and trust of AI 
driven services at local to national government level. Forming partnerships between Defra 
and academia offers a potential route to bringing air quality science at the forefront of 
outreach with the public.  

With all that in mind, the graduate workforce is likely to embrace data science as a core 
scientific tool in the future. This will inevitably reduce the burden on organisations to invest in 
targeted in-house training. However, the need to provide an innovative and nurturing ‘AI 
aware’ environment will remain, with proposed activities and initiatives given in this report 
designed to facilitate this.  
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4. Measuring Success 
Quantifying the success of AI adoption relies on a clear strategy to first be defined. This 
would also depend on any governance structures and thus reporting in place (e.g. to an 
advisory board). Peer review literature on strategies for adoption and thus success of AI 
technologies appear in their infancy, largely as organisations continue to explore ways to 
improve overall performance through improved predictions and decision-making (Dirican, 
2015). The latest McKinsey Global Survey on the current state of AI confirms the rapid 
growth of generative AI (gen AI) tools, less than one year after the widespread emergence of 
tools such as ChatGPT [McKinsey, 2023]. That same report notes that the most commonly 
reported uses of generative AI are in marketing and sales, product and service development 
whilst noting that knowledge-based industries (including education) could experience 
significant effects. Given the remit Defra has and the opportunities/barriers discussed in this 
report, there are several strategic Key Performance Questions (KPQs) that may be of use in 
the short (12 months) to medium term (2 years) to lead to improved readiness and adoption 
of AI. Potential strategic KPQs are suggested below, which could be partly addressed with 
the information provided in this report.  

       Strategic goal:              Key Performance Questions:        Measures of success: 
  

Define AI strategy               What are the advantages and 
disadvantages around adoption of 
AI according to Defra remit? 
 
What is an appropriate 
governance structure to enable 
successful adoption and/or 
awareness of AI use in air quality 
mitigation? 

Mapping of existing and 
emerging AI technologies to air 
quality management under Defra 
remit. 
 

Development of a strategy 
around a clear governance 
structure.  This includes 
identifying roles, responsibilities, 
advisory board and reporting 
mechanisms.  
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Place Defra at the 
heart of shaping AI 
regulation in 
environmental policy.  

Which areas of activity are open 
to potential challenges around 
unregulated use, closed source 
algorithms, and so on? 
 
What are appropriate 
mechanisms to encourage/force 
best practices of technologies 
provided through funding 
portfolios/contracts? 

  

Documented requirements 
and commentary around 
regulation and standards for 
air quality management. 
 
Formation of cross 
government department 
partnerships. 
 

Horizon scanning activity 
around AI regulations 
 
Audit/cataloguing of data 
repositories and data streams 
on which AI driven air quality 
services/methods could be 
built. 
 
Partnerships with 
academia/industry on 
championing improved access 
to data, databases and 
workflows on evaluating new 
tools. 

Develop and maintain 
training and 
development 
opportunities for staff. 

What roles, responsibilities and 
skill sets would be needed in 
response to a clearly defined AI 
strategy?  

 
How are all staff made aware of 
AI as a general tool and 
evolving landscape of 
innovation? 
 
How are staff enabled to co-
develop innovative solutions?  

Mapping of existing and 
emerging machine learning 
techniques used in air quality 
science to training needs. For 
example: Deep learning, 
explainable AI, Forest based 
methods etc.  
 
Build a training portfolio for 
staff members.  
 
Research partnerships with 
academia and industry. 
 
Joint positions between Defra 
staff and academic institutions.  

Develop and 
maintain an active 
role in the AI 
innovation 
landscape. 

How to retain and nurture talent 
around the use and 
development of AI in the public 
sector? 
 
How to associate key 
developments and benefit 

Create AI roles and 
responsibilities within the 
organisation 
 
Develop use cases for the AI 
landscape: e.g. set questions 
to be addressed and data to 
address that with 
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associated with the use of AI in 
air quality with Defra? 

 
Build new tools and 
techniques in-house; co-
designed with 
academic/industry  
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5. Glossary 
 

Artificial Intelligence (AI) Artificial Intelligence (AI) as a goal of 
autonomous intelligence, which could include 
data driven systems or simply rule based 
systems. 
 

Machine Learning (ML) A subset of AI that concerns development of 
algorithms to extract meaning and build 
potential decisions around data. 

Large Language Model (LLM) A Deep Learning algorithm that can perform a 
variety of natural language processing (NLP) 
tasks. LLMs use transformer architectures 
and are trained using huge quantities of data 
(large).  

ChatGPT Chat Generative Pre-trained Transformer 
(ChatGPT). A class of Large Language Model 
(LLM) which is also a Foundational Model in 
that it can adapt to a wide range of requests. 

Transformer A Machine Learning architecture developed 
by Google. 

BERT Bidirectional Encoder Representations from 
Transformers (BERT). A Natural Language 
Processing (NLP) model. 

Foundational Model A large AI model trained to vast quantities of 
unlabelled data which is then able to be used 
for a wide range of tasks. ChatGPT is an 
example of a Foundational Model. 

CoPilot A Generative AI code generation facility. This 
enables end users to, for example, submit a 
natural language request and receive a 
sample of code based on that request.  

Regression An algorithm to understand the relationship 
between dependent and independent 
variables. Regression models are used to 
predict numerical values based on different 
data points (e.g. NO2 as a function of time 
and weather). 

Classification An algorithm to accurately assign test data 
into specific categories, such as separating 
NO2 from O3.  

Tree based ML method An algorithm that works by partitioning the 
combinations of inputs into a number of 
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smaller (non-overlapping) regions that 
connect with an output.  

Deep Learning Neural networks, modelled after the human 
brain, made of many layers of artificial 
neurons.  

Explainable AI A set of processes and methods that allows 
human users to comprehend and trust the 
results and output created by machine 
learning algorithms 

Graphic Processing Units (GPUs) Specialised hardware, most often connected 
to a motherboard via PCI that accelerates 
computer graphics and image processing.  

Hyperparameters Configuration variables of a machine learning 
model (e.g. number of deep neural layers) 
that scientists use to manage model training. 

Convolutional Neural Networks (CNNs) A machine learning model designed to 
process images; used for image and object 
detection. 

Exploratory Data Analysis (EDA) Used by data scientists to analyse and 
investigate data sets and summarise their 
main characteristics, often employing data 
visualisation methods. 

Data Centric AI The discipline of systematically engineering 
the data used to build an AI system. 

Prompt Engineering The process to guide generative artificial 
intelligence (generative AI) solutions to 
generate desired outputs. 

Edge AI Referred to as ‘edge’ because the AI 
computation is done near the user at the 
edge of a network, close to where data is 
collected. This includes AI computation on 
embedded devices within instruments, for 
example, rather than done via cloud 
computing.  

IoT endpoints Devices that are monitoring a service, 
process, or machine, by collecting data and 
sending it back to be analysed. 

Data Driven Models a process by which a algorithm learns from 
an input dataset and develops or improves a 
structure through the data for a particular 
purpose. 

Unstructured Data Information that isn't stored in a specific 
format. It can contain images, audio, or 
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documents. 

Unsupervised learning Uses machine learning algorithms to analyse 
and cluster unlabelled datasets. 

Supervised learning Defined by its use of labelled datasets to train 
algorithms that to classify data or predict 
outcomes accurately. 

Semi-supervised learning A combination of supervised and 
unsupervised learning, often when there is no 
enough data required to build a robust 
supervised learning algorithm. An 
unsupervised approach first learns latent  

Self-supervised learning A training approach that enables algorithms 
to train and thus learn from unlabelled data 

Transfer learning The approach of taking a mature algorithm, 
often train on huge quantities of data, and 
modifying layers for use in domains where 
labelled data is difficult to accumulate. 
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