

QA/QC Data Ratification Report for the Automatic Urban and Rural Network, October-December 2015 and Annual Report, 2015

Report for Defra and the Devolved Administrations

#### **Customer:**

Defra

Customer reference:

21316

Confidentiality, copyright & reproduction:

This report is Crown Copyright and has been prepared by Ricardo-AEA Ltd under contract to Defra. The contents of this report may not be reproduced in whole or in part, nor passed to any organisation or person without the specific prior written permission of Defra. Ricardo-AEA Ltd accepts no liability whatsoever to any third party for any loss or damage arising from any interpretation or use of the information contained in this report, or reliance on any views expressed therein.

#### **Contact:**

Alison Loader Ricardo Energy & Environment Gemini Building, Harwell, Didcot, OX11 0QR, United Kingdom

t: +44 (0) 1235 753632

e: alison.loader@ricardo.com

Ricardo Energy & Environment is certificated to ISO9001 and ISO14001

Author:

Stewart Eaton

Approved By:

Alison Loader

Date:

25 August 2016

Ricardo Energy & Environment reference:

Ref: ED60071201\_2015Q4- Issue 1

# **Executive summary**

Ricardo Energy & Environment carries out the quality assurance and quality control (QA/QC) activities for the Automatic Urban and Rural Monitoring Network (AURN) on behalf of the UK Department for Environment, Food and Rural Affairs (Defra), the Scottish Government, Welsh Government and Department of Agriculture, Environment and Rural Affairs (DAERA) in Northern Ireland.

A total of 152 monitoring stations in the AURN operated during the three-month period October – December 2015.

Ricardo Energy & Environment carried out two Network Intercalibration exercises during calendar year 2015, in winter (January - March) and summer (August - September). The data were ratified quarterly in arrears and made available via Defra's online UK Air Information Resource (UK-AIR). In addition, calibration of all ozone analysers was carried out in April and October.

Ratified hourly average data capture for the network averaged 92.64% for all pollutants (O<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub>, CO, PM<sub>10</sub> and PM<sub>2.5</sub>) during the three-month reporting period October-December 2015. Average data capture for all pollutants were above 85%. There were 26 monitoring stations with data capture less than 90% for the period, of which 19 had data capture below 85%.

For the whole calendar year 2015, ratified hourly average data capture for the network averaged 91.53% for all pollutants (O<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub>, CO, PM<sub>10</sub> and PM<sub>2.5</sub>). The target for annual data capture is 85%, which is based upon the 90% data capture target of the Air Quality Directive, with an allowance of 5% for planned maintenance. There were 38 monitoring stations with data capture less than 90% for the period, of which 23 had data capture below 85%.

The main reasons for data loss were sampling faults, poor analyser performance and persistent temperature problems.

The routine QA/QC procedures have included checking of particulate analyser baselines for some time now. The CEN standard method for ambient particulate matter EN16450 states that action must be taken when baseline response is higher than 3  $\mu g$  m<sup>-3</sup> but does not state what the action should be. Up to now the only agreed action was to delete the data. However, as part of ongoing improvement activities a protocol has been agreed to enable baselines to be corrected where baseline responses exceed 3  $\mu g$  m<sup>-3</sup>. The 2015 dataset has been assessed and baselines adjusted where there is evidence to suggest this is appropriate, for example, a high zero response. This has resulted in some previously rejected data being reinstated. This protocol will continue from now onwards.

# Table of contents

| 1   |                     | duction                                                                            |    |
|-----|---------------------|------------------------------------------------------------------------------------|----|
|     | 1.1                 | Background                                                                         |    |
|     | 1.2<br>1.3          | What this Report Covers                                                            |    |
|     | 1.4                 | Changes to the Network during this Year                                            |    |
| 2   | Moth                | odology                                                                            |    |
| _   | 2.1                 | Overview of QA/QC Activities                                                       |    |
|     | 2.2                 | QA/QC Audits                                                                       | 3  |
|     | 2.3                 | Overview of Data Ratification                                                      | 5  |
| 3   | Inter               | calibration Results Summary (2015)                                                 | 6  |
|     | 3.1                 | National Network Overview                                                          | 6  |
|     | 3.2                 | Calculations of Measurement Uncertainty                                            |    |
|     | 3.3                 | Certification                                                                      |    |
| 4   |                     | Ratification Results (4 <sup>th</sup> Quarter)                                     |    |
|     | 4.1<br>4.1.1        | Data Capture – Network Overview                                                    |    |
|     | 4.1.<br>4.1.2       |                                                                                    |    |
|     | 4.1.3               |                                                                                    |    |
|     | 4.2                 | Data Capture and Station-Specific Issues October-December 2015- England (Excluding |    |
|     |                     | er London)                                                                         |    |
|     | 4.3                 | Data Capture and Station-Specific Issues October-December 2015- Greater London     |    |
|     | 4.4<br>4.5          | Data Capture and Station-Specific Issues October-December 2015– Wales              |    |
|     | 4.5<br>4.6          | Data Capture and Station-Specific Issues October-December 2015 – Scotland          |    |
|     | 4.7                 | Changes to Previously Ratified Data                                                |    |
|     | 4.8                 | Zero Baseline Correction                                                           |    |
| 5   | Healt               | h and Safety Report 2015                                                           | 19 |
| 6   | AURI                | N Hub                                                                              | 21 |
| 7   | Faui                | oment Upgrade Requirements                                                         | 21 |
| •   | 7.1                 | Equipment                                                                          |    |
| 8   |                     | itory of Defra-Owned Equipment                                                     |    |
|     |                     |                                                                                    |    |
| 9   | 1 <b>mpr</b><br>9.1 | oved TechnologyImprovements Introduced                                             |    |
| 4.0 | -                   | ·                                                                                  |    |
| 10  |                     | lusions                                                                            |    |
|     | 10.1<br>10.2        | Annual Data Capture 2015Stations where Data Capture was Below 85%                  |    |
|     |                     |                                                                                    |    |

# 1 Introduction

## 1.1 Background

The UK Automatic Urban and Rural Network (AURN) was established to provide information on air quality throughout the UK for a range of pollutants. The primary function of the AURN is to provide data in compliance with EU Directives on Air Quality. However, in addition, the data and information from the AURN are required by scientists, policy makers and planners to enable them to make informed decisions on managing and improving air quality for the benefit of health and the natural environment.

A number of organisations are involved in the day-to-day running of the network. Currently, the role of Central Management and Co-ordination Unit (CMCU) for the AURN is contracted to Bureau Veritas, whilst the Environmental Research Group (ERG) of King's College London has been appointed as Management Unit for the AURN monitoring stations that are also part of the London Air Quality Network (LAQN). Ricardo Energy & Environment undertakes the role of Quality Assurance and Quality Control Unit (QA/QC Unit) for stations within the AURN. The responsibility for operating individual monitoring stations is assigned to local organisations with relevant experience in the field under the direct management (and contract to) CMCU. Calibration gases for the network are supplied by Air Liquide (UK) Ltd and are provided with an ISO17025 certificate of calibration by Ricardo. The monitoring equipment is serviced and maintained by a number of Equipment Support Units, under contract to the CMCU.

Dissemination of the data from the AURN via UK-AIR (the UK online Air Information Resource, <a href="http://uk-air.defra.gov.uk/">http://uk-air.defra.gov.uk/</a>) and other media such as freephone services is undertaken by the Data Dissemination Unit (DDU). A summary report of the data is also published annually in the "Air Pollution in the UK" series of reports, available on UK-AIR.

A total of 152 monitoring stations in the AURN operated during this quarter. This includes five sites where Partisol gravimetric particulate samplers are co-located with automatic particulate analysers. (The gravimetric data are used in validating the performance of the automatic analysers). For data processing purposes the gravimetric sampler is treated as a separate station; and they are shown, and counted, separately in the data capture tables in section 4.

The main reasons for data loss at the stations are discussed in section 4. These were predominantly due to instrument or air conditioning faults, response instability or problems associated with the replacement of analysers and infrastructure.

# 1.2 What this Report Covers

This report covers the three-month period October to December 2015, or "Quarter 4" of the year. As it is the final quarterly report of the year, it also includes a summary of significant events and statistics for the full calendar year, a summary of health and safety activities, an inventory of Defra-owned equipment held by the QA/QC Unit in connection with this work, and a section relating to issues of improved technologies. This report covers the main QA/QC activities; the relevant CMCU reports should be consulted for more detail on station operational issues.

## 1.3 Where to Find More Information

Further information on the AURN can be found in the following:

- The AURN Hub. This online resource for AURN stakeholders contains network-specific information relating to the AURN, including the LSO Manual, QA/QC audit and ESU service schedules, CMCU reports and supporting information.
- UK-AIR, which contains information on individual stations along with real-time hourly data, graphs and statistics.

# 1.4 Changes to the Network during this Year

Table 1.1 shows the new monitoring stations which were commissioned in 2015, and those that closed in 2015.

Table 1.1 Station changes in 2015

| New stations                    | Pollutants                                                                        | Date started  |
|---------------------------------|-----------------------------------------------------------------------------------|---------------|
| Hull Holderness Road            | NO <sub>2</sub> PM <sub>10</sub>                                                  | 1 Jan 2015    |
| Sunderland Wessington Way       | PM <sub>10</sub>                                                                  | 15 Jan 2015   |
| Glasgow High Street             | NO <sub>2</sub>                                                                   | 27 Jan 2015   |
| Luton A505 Roadside             | NO <sub>2</sub>                                                                   | 11 Mar 2015   |
| Chesterfield Loundsley Green    | NO <sub>2</sub> PM <sub>2.5</sub> PM <sub>10</sub>                                | 1 Mar 2015    |
| Widnes Milton Road              | NO <sub>2</sub>                                                                   | 9 Mar 2015    |
| Bury Whitefield Roadside        | NO <sub>2</sub> PM <sub>10</sub>                                                  | 1 Mar 2015    |
| Bradford Mayo Avenue            | NO <sub>2</sub>                                                                   | 24 April 2015 |
| Doncaster A630 Cleveland Street | NO <sub>2</sub>                                                                   | 7 May 2015    |
| Leicester A594 Roadside         | NO <sub>2</sub>                                                                   | 1 June 2015   |
| Stoke on Trent A50 Roadside     | NO <sub>2</sub> PM <sub>10</sub>                                                  | 1 May 2015    |
| Station Closures                | Pollutants                                                                        | Date closed   |
| Harwell                         | O <sub>3</sub> SO <sub>2</sub> NO <sub>2</sub> PM <sub>2.5</sub> PM <sub>10</sub> | 31 Dec 2015   |

(Harwell was replaced by a new station, Chilbolton Observatory, as of 11 Jan 2016).

# 2 Methodology

## 2.1 Overview of QA/QC Activities

The QA/QC activities consist of the following key parts:

- QA/QC audits of all analysers in the network every six months (three months for ozone)
- Ratification of the data on a three-monthly basis, and upload of ratified data to the Data Dissemination Unit
- Assessment of new station locations in conjunction with the CMCU, and assessment of compliance with the siting criteria in the Directive
- Investigation of instances of suspected poor quality data.

## 2.2 QA/QC Audits

The QA/QC intercalibration audits fulfil a number of important functions:

- A "health check" on the production of provisionally scaled data, which is rapidly disseminated to the public soon after collection.
- Identification of poorly-performing analysers and infrastructure, together with recommendations for corrective action.
- A measure of network performance, by examining for example, how different NOx analysers around the network respond to a common gas standard. This test checks how "harmonised" UK measurements are; i.e. that a 200ppb NO<sub>2</sub> pollution episode in (for example) Belfast would be reported in exactly the same way at every other station in the UK, regardless of the location or the analyser used to record the event.
- Assessment of the area around the monitoring station: has the environment changed in the last six months? Is the location still representative of the station classification?

The QA/QC audits test the following aspects of analyser performance:

- 1. Analyser accuracy and precision. These are basic checks to ensure analysers respond to known concentrations of gases in a reliable manner.
- 2. Instrument linearity. This test refines the response checks on analysers, by assessing whether doubling a concentration of gas to the analyser results in a doubling of the analyser signal response. If an analyser's response characteristics are not linear, data cannot be reliably scaled into concentrations.
- 3. Instrument signal noise. This test checks that an analyser responds to calibration gases in a stable manner with time. A "noisy" analyser may not provide high quality data which may be difficult to process at lower concentrations.
- 4. Analyser response time. This test checks that the analyser responds quickly to a change in gas concentrations. If analyser response is too slow, data may not accurately reflect ambient concentrations.
- 5. Leak and flow checks. These tests ensure that ambient air reaches the analysers, without being compromised in any way. Leaks in the sampling system can affect the ability of the analyser to sample ambient air reliably.
- 6. NOx analyser converter efficiency. This test evaluates the ability of the analyser to measure NO<sub>2</sub>. An inefficient converter severely compromises the data from the analyser.
- 7. FDMS  $k_0$  evaluation. The analyser uses this factor to calculate mass concentrations, so the value is calculated to determine its accuracy compared to the stated value.
- 8. Particulate analyser flow rate checks. These tests ensure that the flow rates through critical parts of the analyser are within specified limits. There are specific analyser flow rates that are

set to make sure particle size fractions and mass concentration calculations are performed correctly.

- 9. SO<sub>2</sub> analyser hydrocarbon interference. This test evaluates the analyser's ability to remove interfering hydrocarbon gases from the sample gas. A failed test could have significant implications for analyser data.
- 10. Evaluation of station cylinder concentrations. These tests use a set of Ricardo Energy & Environment certified cylinders that are taken to all the stations. The concentrations of the station cylinders are used to scale pollution datasets, so it is important to ensure that the concentrations of gases in the cylinders do not change.
- 11. Competence of Local Station Operators (LSOs) in undertaking calibrations. As it is the calibrations by the LSOs that are used to scale pollution datasets, it is important to check that these are undertaken competently.
- 12. Zero "calibration" of all automatic PM analysers. This test allows the baseline performance of PM analysers to be evaluated, to determine whether any remedial action is required to the analyser or baseline to be corrected during ratification.

Once all data have been collected, a "Network Intercomparison" is conducted. This utilises the audit gas cylinders transported to each station in the Network. These cylinders are recently calibrated by the Calibration Laboratory at Ricardo Energy & Environment, and allow us to examine how different station analysers respond when they are supplied with the same gas used at other stations. For ozone analysers, the calibration is undertaken with recently calibrated ozone photometers.

The technique used to process the intercomparison results is broadly as follows:

- The analyser responses to audit gas are converted into concentrations, using provisional calibration factors obtained from the Management Units on the day of the intercalibration. These factors are also used for the provisional data supplied to the web services.
- These individual results are tabulated, and statistical analyses undertaken (e.g. network average result, network standard deviation, deviation of individual stations from the network mean etc.).

These results are then used to pick out problem stations, or "outliers", which are investigated further to determine reasons and investigate possible remedies for the outliers. The definition of an outlier is an analyser result that falls outside the following limits:

- ±10% of the network average for NOx, CO and SO<sub>2</sub> analysers,
- ±5% of the reference standard photometer for Ozone analysers,
- ±2.5 % of the stated k<sub>0</sub> value for FDMS analysers,
- ±10% for particulate analyser flow rates,
- Particulate analyser average zero response within ±3.0 µg m<sup>-3</sup>.
- ±10% for the recalculation of station cylinder concentrations.

Thus, the intercalibration investigates the quality of provisional data output by the Management Units for use in forecasting, interactive television services and the web. It also provides input into the ratification process by highlighting stations where close scrutiny of datasets is likely to be required.

Any outliers that are identified are rigorously checked to determine the cause, and any required corrective action to be taken, if necessary. There are a number of likely main causes for outlier results, as discussed below:

• Drift of an analyser between scheduled LSO calibrations. This is by far the most common cause of an outlier result, and one that is simply corrected for during ratification of data.

- Drift of station cylinder concentrations between intercalibrations. Station cylinders can sometimes become unstable, especially at low pressures. All station cylinder concentrations are checked every six months, and are replaced as necessary.
- Erroneous calibration factors. It can occasionally happen that an analyser calibration is unsuccessful, and results in unsuitable scaling factors being used to produce pollution datasets. These are identified and corrected during ratification.
- Pressurisation of the sampling system at the audit. Occasionally, an analyser can be very sensitive to small changes in applied flow rates of calibration gas. This is more difficult to identify and correct, and may have consequences for data quality.
- Leaks, sample switching valves, etc. Outliers can be generated if an analyser is not sampling ambient air properly. It is likely that if a leaking analyser is identified, data losses will result.

Full audits of all analysers are carried out at six-monthly intervals in the winter (January-February) and summer (July-August). In addition, audits of ozone analysers are also carried out in spring (April) and autumn (October).

## 2.2.1 Methodology for FDMS & BAM Baseline Checks

As part of the QA/QC remit for continuous improvement, an ad hoc study of particulate matter (PM) analyser baseline response has been undertaken for the past two years. This study has been coordinated following investigations of issues identified both by CMCU during routine operation and by QA/QC unit during the ratification process.

The study initially concentrated on FDMS analysers, examining the baseline profile of the reference channels and the relationship with other neighbouring monitoring stations. It has become clear that, on a daily mean basis, regional reference PM concentrations regularly reach a minimum value that approaches 0  $\mu$ g m<sup>-3</sup>. The test is equally valid for BAM instruments, and thus the tests are also carried out on these.

The routine QA/QC procedures have included checking of particulate analyser baselines for some time now. The CEN standard method for ambient particulate matter EN16450 states that action must be taken when baseline response is higher than 3  $\mu g$  m<sup>-3</sup> but does not state what the action should be. Up to now the only agreed action was to delete the data. However, as part of ongoing improvement activities a protocol has been agreed to enable baselines to be corrected where baseline responses exceed 3  $\mu g$  m<sup>-3</sup>. The 2015 dataset have been assessed and baselines adjusted where there is evidence to suggest this is appropriate, for example a high zero response. This has resulted in some previously rejected data being reinstated. This protocol will continue from now onwards.

## 2.3 Overview of Data Ratification

Data for each station are supplied monthly by the CMCUs. Once initial monthly data files have been received, checked and loaded into MODUS, the process of data ratification begins. This process is required to refine data scaling based on all the calibration and audit data available, and to identify, withdraw or flag anomalous data due to instrument or sampling faults or where data fall outside the Uncertainties or Limits of Detection defined by the Data Quality Objectives (DQOs) of Directive 2008/50/EC (the Air Quality Objective) and the European Union's Implementing Provisions for Reporting.

# 3 Intercalibration Results Summary (2015)

## 3.1 National Network Overview

A summary of the findings of the 2015 intercalibrations is given in Table 3.1.

Table 3.1 Summary of Network Intercalibrations, 2015

|                              |                                       | Winter 2015                                                                                                      |                     |                                          | Summer 2015                                                                                                      |                     |
|------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------|
| Parameter                    | Number of outliers                    | Number in<br>network                                                                                             | % outliers in total | Number of outliers                       | Number in<br>network                                                                                             | % outliers in total |
| NOx analyser                 | 29                                    | 126                                                                                                              | 23%                 | 22                                       | 131                                                                                                              | 17%                 |
| CO analyser                  | 0                                     | 7                                                                                                                | 0%                  | 1                                        | 6                                                                                                                | 17%                 |
| SO <sub>2</sub> analyser     | 6                                     | 30                                                                                                               | 20%                 | 4                                        | 29                                                                                                               | 14%                 |
| Ozone<br>analyser            | 13                                    | 83                                                                                                               | 16%                 | 11                                       | 78                                                                                                               | 14%                 |
| FDMS and<br>BAM<br>analysers | 1 k <sub>0</sub><br>6 flow<br>12 zero | 62 FDMS<br>PM <sub>10</sub><br>3 BAM PM <sub>10</sub><br>69 FDMS<br>PM <sub>2.5</sub><br>2 BAM PM <sub>2.5</sub> | 5%                  | 1 k <sub>0</sub> ,<br>8 flow,<br>32 zero | 67 FDMS<br>PM <sub>10</sub><br>3 BAM PM <sub>10</sub><br>66 FDMS<br>PM <sub>2.5</sub><br>2 BAM PM <sub>2.5</sub> | 7%                  |
| Gravimetric<br>PM analysers  | 1 flow                                | 8 PM <sub>10</sub><br>9 PM <sub>2.5</sub>                                                                        | 6%                  | 1 flow                                   | 10 PM <sub>10</sub><br>11 PM <sub>2.5</sub>                                                                      | 5%                  |
| Total                        | 68                                    | 399                                                                                                              | 17.0%               | 80                                       | 403                                                                                                              | 19.8%               |

In the spring 2015 ozone intercalibration, there were 16 analysers out by more than 5%. The figure for the autumn exercise was 15.

# 3.2 Calculations of Measurement Uncertainty

The uncertainty of measurement of each analyser is calculated at each intercalibration. These are presented in the January-March and July-September QA/QC reports.

The ozone analyser at Mace Head was not a CEN compliant model and therefore no generic performance data have been calculated. It has been replaced with a compliant model in February 2016 The  $PM_{10}$  analyser at Stockton-on-Tees Eaglescliffe is also non-compliant and is due for replacement in due course.

## 3.3 Certification

Certificates of calibration for each intercalibration exercise are provided on the AURN Hub (at http://aurnhub.defra.gov.uk/login.php)

# 4 Data Ratification Results (4<sup>th</sup> Quarter)

## 4.1 Data Capture – Network Overview

## 4.1.1 Overall Data Capture

Ratified hourly average (daily average for Partisols) data capture for the network averaged 92.64% for all pollutants ( $O_3$ ,  $NO_2$ ,  $SO_2$ , CO,  $PM_{10}$  and  $PM_{2.5}$ ) during the three-month reporting period October-December 2015. Data capture statistics are calculated using the actual data capture as hourly averages (daily for Partisol) against the total number of hours (or days) in the relevant period; service and maintenance are counted as lost data. It is permissible to discount routine service and calibration from achievable data capture targets, but this is not calculated. For stations starting or closing during the period, the data capture is based on the actual date starting or closing. All pollutants achieved 85% or higher data capture on average. The data capture target for the purposes of monitoring compliance with the EU Air Quality Directive (Directive 2008/50/EC) is 90% excluding planned servicing and maintenance. For practical purposes in the AURN, planned maintenance is assumed to be 5% so a target of 85% data capture is used.

Data capture for each quarter is shown in Table 4.1.

Table 4.1: AURN Ratified Data Capture (%) by Quarter, 2015

| Quarter | CO    | NO <sub>2</sub> | O <sub>3</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | Mean  |
|---------|-------|-----------------|----------------|------------------|-------------------|-----------------|-------|
| Q1 2015 | 91.27 | 90.43           | 93.67          | 85.77            | 87.71             | 84.01           | 89.66 |
| Q2 2015 | 96.68 | 91.23           | 92.22          | 90.71            | 95.10             | 89.86           | 92.08 |
| Q3 2015 | 97.50 | 91.41           | 93.32          | 86.75            | 87.97             | 92.51           | 90.54 |
| Q4 2015 | 98.71 | 93.02           | 96.18          | 89.28            | 92.97             | 93.21           | 92.64 |
| 2015    | 96.06 | 92.02           | 93.85          | 88.35            | 91.11             | 89.93           | 91.53 |

The data captures from previous quarters have been recalculated to reflect data changed in subsequent quarters.

Note that the overall data capture value is the average calculated from the data captures at individual sites, these themselves being the average of all pollutants at that site.

### 4.1.2 Generic Data Quality Issues

The following generic data quality issues have been identified in 2015:

- The use of obsolete mass transducer filters on FDMS analysers, resulting in high analyser noise
- Improperly configured sampling systems which compromise the sampled air, resulting in false readings. This has been a problem in the past, and during 2015 continued to cause significant data loss, for example at Edinburgh St Leonards.

#### 4.1.3 Data Precision

As part of the requirements of the INSPIRE Directive 2007/2/EC and 2011/850/EU Implementing Decision, data is required to be reported to one decimal place (two for CO). As of January 2016, only Armagh Roadside was still reporting gaseous data as integers.

# 4.2 Data Capture and Station-Specific Issues October-December 2015- England (Excluding Greater London)

Table 4.2 shows percentage data capture for stations in England during Quarter 4 of 2015. The table is followed by details of individual station-specific issues.

Table 4.2 Data Capture - England - Quarter 4 (Oct-Dec) 2015

| Name                               | со | NO <sub>2</sub> | <b>O</b> <sub>3</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | Quarter<br>Average |
|------------------------------------|----|-----------------|-----------------------|------------------|-------------------|-----------------|--------------------|
| Barnsley Gawber                    |    | 99.64           | 99.73                 |                  |                   | 97.87           | 99.08              |
| Barnstaple A39                     |    |                 |                       | 93.75            | 90.67             |                 | 92.21              |
| Bath Roadside                      |    | 99.14           |                       |                  |                   |                 | 99.14              |
| Billingham                         |    | 99.55           |                       |                  |                   |                 | 99.55              |
| Birmingham Acocks<br>Green         |    | 99.91           | 99.59                 |                  | 99.82             |                 | 99.77              |
| Birmingham Tyburn                  |    | 98.19           | 98.32                 | 94.79            | 99.77             | 97.55           | 97.73              |
| Birmingham Tyburn<br>Roadside      |    | 96.29           | 98.01                 | 92.35            | 97.19             |                 | 95.96              |
| Blackburn Accrington<br>Road       |    | 99.59           |                       |                  |                   |                 | 99.59              |
| Blackpool Marton                   |    | 93.03           | 100.00                |                  | 99.86             |                 | 97.63              |
| Bottesford                         |    |                 | 99.14                 |                  |                   |                 | 99.14              |
| Bournemouth                        |    | 99.86           | 99.95                 |                  | 100.00            |                 | 99.94              |
| Bradford Mayo<br>Avenue            |    | 98.60           |                       |                  |                   |                 | 98.60              |
| Brighton Preston<br>Park           |    | 99.18           | 99.50                 |                  | 75.00             |                 | 91.23              |
| Bristol St Paul's                  |    | 99.59           | 99.59                 | 87.82            | 98.69             |                 | 96.42              |
| Bury Whitefield<br>Roadside        |    | 91.12           |                       | 87.91            |                   |                 | 89.52              |
| Cambridge Roadside                 |    | 95.38           |                       |                  |                   |                 | 95.38              |
| Canterbury                         |    | 96.38           | 100.00                |                  |                   |                 | 98.19              |
| Carlisle Roadside                  |    | 68.30           |                       | 70.02            | 70.11             |                 | 69.47              |
| Charlton Mackrell                  |    | 99.91           | 99.91                 |                  |                   |                 | 99.91              |
| Chatham Centre<br>Roadside         |    | 99.77           |                       | 99.91            | 81.84             |                 | 93.84              |
| Chesterfield<br>Loundsley Green    |    | 94.57           |                       | 99.18            | 99.73             |                 | 97.83              |
| Chesterfield<br>Roadside           |    | 92.48           |                       | 98.28            | 98.23             |                 | 96.33              |
| Coventry Allesley                  |    | 99.82           | 99.77                 |                  | 88.86             |                 | 96.15              |
| Doncaster A630<br>Cleveland Street |    | 99.68           |                       |                  |                   |                 | 99.68              |
| Eastbourne                         |    | 99.95           |                       | 88.00            | 100.00            |                 | 95.98              |
| Exeter Roadside                    |    | 99.18           | 0.00                  |                  |                   |                 | 49.59              |
| Glazebury                          |    | 99.37           | 99.55                 |                  |                   |                 | 99.46              |
| Great Dun Fell                     |    |                 | 99.28                 |                  |                   |                 | 99.28              |
| Harwell                            |    | 99.55           | 99.86                 | 86.45            | 99.95             | 95.70           | 96.30              |

| Name                                | со    | NO <sub>2</sub> | O <sub>3</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | Quarter<br>Average |
|-------------------------------------|-------|-----------------|----------------|------------------|-------------------|-----------------|--------------------|
| Harwell (Partisol)                  |       |                 |                | 100.00           | 100.00            |                 | 100.00             |
| High Muffles                        |       | 80.25           | 80.39          | 100.00           | 100.00            |                 | 80.32              |
| Honiton                             |       | 99.68           | 00100          |                  |                   |                 | 99.68              |
| Horley                              |       | 99.68           |                |                  |                   |                 | 99.68              |
| Hull Freetown                       |       | 99.64           | 95.61          |                  | 100.00            | 99.77           | 98.75              |
| Hull Holderness<br>Road             |       | 99.86           |                | 88.50            |                   |                 | 94.18              |
| Ladybower                           |       | 17.39           | 17.35          |                  |                   | 17.35           | 17.36              |
| Leamington Spa                      |       | 99.77           | 99.68          | 98.82            | 99.91             |                 | 99.55              |
| Leamington Spa<br>Rugby Road        |       | 99.73           |                | 95.88            | 96.11             |                 | 97.24              |
| Leeds Centre                        | 99.00 | 99.77           | 99.77          | 98.10            | 98.46             | 99.28           | 99.06              |
| Leeds Headingley<br>Kerbside        |       | 99.73           |                | 93.25            | 97.28             |                 | 96.75              |
| Leicester A594<br>Roadside          |       | 99.55           |                | 99.55            |                   |                 | 99.55              |
| Leicester University                |       | 99.82           | 99.91          |                  | 98.78             |                 | 99.50              |
| Leominster                          |       | 99.77           | 100.00         |                  |                   |                 | 99.89              |
| Lincoln Canwick<br>Road             |       | 99.64           |                |                  |                   |                 | 99.64              |
| Liverpool Queen's<br>Drive Roadside |       | 94.93           |                |                  |                   |                 | 94.93              |
| Liverpool Speke                     |       | 99.37           | 99.95          | 99.77            | 99.91             | 99.55           | 99.71              |
| Lullington Heath                    |       | 99.37           | 99.41          |                  |                   | 92.80           | 97.19              |
| Luton A505<br>Roadside              |       | 99.68           |                |                  |                   |                 | 99.68              |
| Manchester<br>Piccadilly            |       | 99.82           | 99.37          |                  | 99.32             | 99.77           | 99.57              |
| Manchester South                    |       | 99.18           | 99.32          |                  |                   |                 | 99.25              |
| Market Harborough                   |       | 95.43           | 99.50          |                  |                   |                 | 97.46              |
| Middlesbrough                       |       | 90.67           | 97.64          | 92.30            | 28.26             | 97.15           | 81.20              |
| Newcastle Centre                    |       | 92.84           | 88.72          | 91.53            | 83.06             |                 | 89.04              |
| Newcastle<br>Cradlewell Roadside    |       | 95.83           |                |                  |                   |                 | 95.83              |
| Northampton<br>Kingsthorpe          |       | 82.74           | 94.02          |                  | 100.00            |                 | 92.26              |
| Norwich Lakenfields                 |       | 99.86           | 99.91          | 87.27            | 93.07             |                 | 95.03              |
| Nottingham Centre                   |       | 97.37           | 97.46          | 96.47            | 97.46             | 84.65           | 94.68              |
| Oldbury Birmingham<br>Road          |       | 82.02           |                |                  |                   |                 | 82.02              |
| Oxford Centre<br>Roadside           |       | 99.41           |                |                  |                   |                 | 99.41              |
| Oxford St Ebbes                     |       | 99.73           |                | 64.36            | 62.82             |                 | 75.63              |
| Plymouth Centre                     |       | 99.82           | 99.95          | 99.95            | 53.22             |                 | 88.24              |
| Portsmouth                          |       | 99.86           | 99.91          | 54.08            | 95.43             |                 | 87.32              |
| Preston                             |       | 99.82           | 94.07          |                  | 64.58             |                 | 86.16              |

| Name                               | со | NO <sub>2</sub> | O <sub>3</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | Quarter<br>Average |
|------------------------------------|----|-----------------|----------------|------------------|-------------------|-----------------|--------------------|
| Reading New Town                   |    | 98.60           | 98.01          | 98.60            | 91.80             |                 | 96.75              |
| Rochester Stoke                    |    | 99.82           | 99.77          | 52.58            | 97.64             | 95.56           | 89.08              |
| Salford Eccles                     |    | 98.41           |                | 98.87            | 99.50             |                 | 98.93              |
| Saltash Callington<br>Road         |    |                 |                | 46.38            | 75.63             |                 | 61.01              |
| Sandy Roadside                     |    | 95.56           |                | 80.84            | 98.46             |                 | 91.62              |
| Scunthorpe Town                    |    | 99.59           |                | 96.56            |                   | 99.59           | 98.58              |
| Shaw Crompton Way                  |    | 41.80           |                |                  |                   |                 | 41.80              |
| Sheffield Devonshire Green         |    | 99.82           | 99.73          | 99.14            | 74.05             |                 | 93.18              |
| Sheffield Tinsley                  |    | 92.84           |                |                  |                   |                 | 92.84              |
| Sibton                             |    |                 | 99.77          |                  |                   |                 | 99.77              |
| Southampton Centre                 |    | 88.32           | 98.41          | 98.51            | 98.10             | 98.32           | 96.33              |
| Southend-on-Sea                    |    | 99.59           | 99.73          |                  | 97.83             |                 | 99.05              |
| St Osyth                           |    | 94.02           | 98.19          |                  |                   |                 | 96.11              |
| Stanford-le-Hope<br>Roadside       |    | 99.68           |                | 0.00             | 99.28             |                 | 66.32              |
| Stockton-on-Tees<br>A1305 Roadside |    | 99.58           |                |                  |                   |                 | 99.58              |
| Stockton-on-Tees<br>Eaglescliffe   |    | 99.86           |                | 98.32            | 99.05             |                 | 99.08              |
| Stoke on Trent A50<br>Roadside     |    | 98.87           |                | 98.96            |                   |                 | 98.91              |
| Stoke-on-Trent<br>Centre           |    | 99.55           | 99.55          |                  | 90.76             |                 | 96.62              |
| Storrington Roadside               |    | 98.23           |                | 95.43            | 95.24             |                 | 96.30              |
| Sunderland<br>Silksworth           |    | 82.47           | 99.86          |                  | 99.32             |                 | 93.89              |
| Sunderland<br>Wessington Way       |    | 99.73           |                |                  |                   |                 | 99.73              |
| Thurrock                           |    | 95.11           | 99.73          | 99.68            |                   | 99.18           | 98.43              |
| Walsall Woodlands                  |    | 99.86           | 99.86          |                  |                   |                 | 99.86              |
| Warrington                         |    | 99.77           |                | 99.91            | 99.68             |                 | 99.79              |
| Weybourne                          |    |                 | 99.91          |                  |                   |                 | 99.91              |
| Wicken Fen                         |    | 99.59           | 99.59          |                  |                   | 99.05           | 99.41              |
| Widnes Milton Road                 |    | 0.00            |                |                  |                   |                 | 0.00               |
| Wigan Centre                       |    | 95.52           | 94.38          |                  | 62.32             |                 | 84.07              |
| Wirral Tranmere                    |    | 99.86           | 100.00         |                  | 99.73             |                 | 99.86              |
| Yarner Wood                        |    | 99.55           | 99.46          |                  |                   |                 | 99.50              |
| York Bootham                       |    |                 |                | 99.59            | 99.23             |                 | 99.41              |
| York Fishergate                    |    | 99.64           |                | 99.77            | 98.37             |                 | 99.26              |
| Number of Stations                 | 1  | 87              | 52             | 42               | 51                | 16              | 95                 |
| Number of stations < 85 %          | 0  | 8               | 3              | 7                | 11                | 2               | 12                 |
| Number of stations < 90%           | 0  | 9               | 4              | 13               | 12                | 2               | 18                 |

| Name    | со    | NO <sub>2</sub> | <b>O</b> <sub>3</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | Quarter<br>Average |
|---------|-------|-----------------|-----------------------|------------------|-------------------|-----------------|--------------------|
| Average | 99.00 | 94.43           | 95.00                 | 88.61            | 91.05             | 92.07           | 92.25              |

#### **Bury Whitefield Roadside**

The NOx analyser developed faults and spare parts could not be sourced. A hotspare was installed in January pending purchase of a new analyser. The  $PM_{10}$  data were deleted from 14-21 December due to very poor agreement of regional volatile concentration.

### **Carlisle Roadside**

The station was flooded on 6 December, and repairs resulted in the loss of data for the rest of the quarter.

#### **Exeter Roadside**

The ozone data for 2015 were observed to be low, up to a step change in 2016. All data for 2015 have been deleted

#### **High Muffles**

At the winter 2016 audit on 29 January, the sample manifold pump was found to have become disconnected from the manifold tube, allowing the analysers to sample internally. All data were deleted from 14 December to 29 January.

### Ladybower

A step change in NOx and ozone data was observed on 16 December. Subsequent investigation suggested that the sampling system may have been compromised for some time, though no specific activity was noted on the day. All data from 1 January to 16 December have been deleted.

### **Oldbury Birmingham Road**

Intermittent data losses from a faulty logger were observed in December.

#### Oxford St Ebbes

The poor quality data from both FDMS analysers have been a cause for concern in previous quarters, and ultimately both analysers were removed for workshop repair from 4 December to 5 January.

#### **Plymouth Centre**

A leak in the PM<sub>2.5</sub> FDMS valve block was found at the ESU callout on 23 December. Data from 13 November-24 December have been deleted.

### **Rochester Stoke**

The  $PM_{10}$  sample head became blocked at the end of September to 23 October. The  $PM_{10}$  was then seen to be a regional outlier, and failed the zero test at the winter 2016 audit, where the pump vacuum was found to be low. Data from 15-31 December have been deleted.

### Saltash Callington Road

Although there was no single period of more than a month for either analyser for which data was rejected, several shorter periods of data were rejected as a result of problems caused by water ingress, so overall data capture for Q4 of 2015 was poor.

#### **Shaw Crompton Way**

The station suffered from several communications faults during the quarter and data could not be retrieved.

### Stanford-le-Hope Roadside

The PM<sub>10</sub> FDMS has suffered from very poor performance for some time. The interface board was changed in January, which appears to have improved the data. All data from 6 September to 31 December have been deleted.

#### **Widnes Milton Road**

The analyser suffered several failures in 2015, including from 28 September when a hotspare analyser was installed. Unfortunately, this was not a CEN compliant model, and so these data have been deleted.

### Wigan Centre

The station was switched off from 7-11 November for roof repairs. The PM<sub>2.5</sub> control unit was then removed for workshop repair; this was reinstalled on 20 November. From mid-December, the data drift from the regional average, and with some problems identified in Q1 of 2016, data were deleted 10-31 December.

# 4.3 Data Capture and Station-Specific Issues October-December 2015- Greater London

Table 4.3 shows percentage data capture for stations in Greater London during Quarter 4 of 2015. The table is followed by details of individual station-specific issues.

Table 4.3 Data Capture - Greater London - Quarter 4 (Oct-Dec) 2015

| Name                                    | со    | NO <sub>2</sub> | <b>O</b> <sub>3</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | Quarter<br>Average |
|-----------------------------------------|-------|-----------------|-----------------------|------------------|-------------------|-----------------|--------------------|
| London Bexley                           |       | 99.86           |                       |                  | 99.77             |                 | 99.82              |
| Camden Kerbside                         |       | 98.91           |                       | 93.43            | 93.43             |                 | 95.26              |
| London<br>Bloomsbury                    |       | 99.68           | 99.82                 | 94.75            | 99.00             | 99.73           | 98.60              |
| Ealing Horn Lane                        |       |                 |                       | 92.30            |                   |                 | 92.30              |
| Haringey<br>Roadside                    |       | 95.56           |                       |                  | 99.50             |                 | 97.53              |
| London Haringey<br>Priory Park South    |       | 99.73           | 99.73                 |                  |                   |                 | 99.73              |
| London Hillingdon                       |       | 99.91           | 99.82                 |                  |                   |                 | 99.86              |
| London<br>Westminster                   |       | 95.43           |                       |                  | 88.04             |                 | 91.73              |
| London Harrow<br>Stanmore               |       |                 |                       |                  | 100.00            |                 | 100.00             |
| London<br>Harlington                    |       | 99.23           | 99.37                 | 99.77            | 99.95             |                 | 99.58              |
| London N.<br>Kensington                 | 99.82 | 99.77           | 98.41                 | 99.77            | 99.09             | 99.86           | 99.46              |
| London N.<br>Kensington<br>(Partisol)   |       |                 |                       | 100.00           | 100.00            |                 | 100.00             |
| London Eltham                           |       | 93.84           | 99.59                 |                  | 99.86             |                 | 97.77              |
| London<br>Marylebone Road               | 99.50 | 99.46           | 99.05                 | 96.83            | 98.87             | 99.41           | 98.85              |
| London<br>Marylebone Road<br>(Partisol) |       |                 |                       | 100.00           | 100.00            |                 | 100.00             |
| Southwark A2 Old<br>Kent Road           |       | 99.82           |                       | 14.13            |                   |                 | 56.97              |

9

1

1

87.89

13

1

97.91

3

0

99.67

19

2

2

93.45

8

0

0

99.46

### Southwark A2 Roadside

2

0

0

99.66

14

1

1

95.28

Number of

stations < 85 %
Number of

stations < 90%

Stations Number of

**Average** 

The PM<sub>10</sub> has been attended for noisy data, however the ESU reported the installation differs significantly from the conditions in which it was equivalence tested in (flow splitter length reduced, distance between sensor and drier unit significantly increased) as it has been installed into a cabinet which is too small for it. Remedial work took place on 21 December 2015.

#### **Tower Hamlets Roadside**

The LSO reported a blank screen on the NOx analyser at the calibration on 22 November. Several visits were undertaken by the ESU, but the part needed was obsolete. A replacement analyser was installed on 2 February.

# 4.4 Data Capture and Station-Specific Issues October-December 2015– Wales

Table 4.4 shows percentage data capture for stations in Wales during Quarter 4 of 2015. The table is followed by details of individual station-specific issues.

Table 4.4 Data Capture Wales - Quarter 4 (Oct-Dec) 2015

| Name                      | со    | NO <sub>2</sub> | O <sub>3</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | Quarter<br>Average |
|---------------------------|-------|-----------------|----------------|------------------|-------------------|-----------------|--------------------|
| Aston Hill                |       | 99.77           | 98.64          |                  |                   |                 | 99.21              |
| Hafod-yr-Ynys<br>Roadside |       | 99.64           |                |                  |                   |                 | 99.64              |
| Cardiff Centre            | 99.91 | 74.91           | 99.91          | 90.99            | 99.91             | 99.73           | 94.23              |
| Chepstow A48              |       | 99.73           |                | 99.91            | 99.37             |                 | 99.67              |
| Cwmbran                   |       | 99.86           | 99.86          |                  |                   |                 | 99.86              |
| Newport                   |       | 59.06           |                | 26.00            | 98.73             |                 | 61.26              |
| Narberth                  |       | 98.51           | 98.60          | 97.92            |                   | 90.22           | 96.31              |

| Name                                | СО    | NO <sub>2</sub> | O <sub>3</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | Quarter<br>Average |
|-------------------------------------|-------|-----------------|----------------|------------------|-------------------|-----------------|--------------------|
| Port Talbot<br>Margam<br>(Partisol) |       |                 |                | 100.00           |                   |                 | 100.00             |
| Port Talbot<br>Margam               | 99.64 | 87.68           | 92.35          | 99.50            | 79.98             | 91.85           | 91.83              |
| Swansea<br>Roadside                 |       | 99.73           |                | 98.46            | 98.69             |                 | 98.96              |
| Wrexham                             |       | 99.09           |                | 100.00           | 94.57             | 99.91           | 98.39              |
| Number of Stations                  | 2     | 10              | 5              | 8                | 6                 | 4               | 11                 |
| Number of stations < 85 %           | 0     | 2               | 0              | 1                | 1                 | 0               | 1                  |
| Number of stations < 90%            | 0     | 3               | 0              | 1                | 1                 | 0               | 1                  |
| Average                             | 99.77 | 91.80           | 97.87          | 89.10            | 95.21             | 95.43           | 94.49              |

### Newport

The data logger was found to have failed on 29 October, resulting in the loss of NO<sub>2</sub> data. The PM<sub>10</sub> was a regional outlier, and data have been deleted from 2 December to 4 January.

# 4.5 Data Capture and Station-Specific Issues October-December 2015 - Scotland

Table 4.5 shows percentage data capture for stations in Scotland during Quarter 4 of 2015. The table is followed by details of individual station-specific issues.

Table 4.5 Data Capture Scotland - Quarter 4 (Oct-Dec) 2015

| Name                              | СО | NO <sub>2</sub> | O <sub>3</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | Quarter<br>Average |
|-----------------------------------|----|-----------------|----------------|------------------|-------------------|-----------------|--------------------|
| Aberdeen                          |    | 97.51           | 90.90          | 99.64            | 77.49             |                 | 91.38              |
| Aberdeen Union<br>Street Roadside |    | 99.59           |                |                  |                   |                 | 99.59              |
| Auchencorth<br>Moss (Partisol)    |    |                 | 99.86          | 96.74            | 100.00            |                 | 98.87              |
| Auchencorth<br>Moss               |    |                 |                | 98.82            | 96.11             |                 | 97.46              |
| Bush Estate                       |    | 99.95           | 99.95          |                  |                   |                 | 99.95              |
| Dumbarton<br>Roadside             |    | 99.50           |                |                  |                   |                 | 99.50              |
| Dumfries                          |    | 99.68           |                |                  |                   |                 | 99.68              |

### **Edinburgh St Leonards**

Concerns were raised by the QA/QC Unit regarding the sampling system integrity for both NOx and SO<sub>2</sub> following cabin replacement in 2014. A further visit to investigate and rectify took place in May 2016, following which a step change in measured NOx concentrations could be seen. The other pollutants did not share the same sampling system and so were unaffected.

## **Grangemouth Moray**

The NOx analyser was removed for repair from 24 September to 6 October following a software fault.

# 4.6 Data Capture and Station-Specific Issues October-December 2015- Northern Ireland

Table 4.6 shows percentage data capture for stations in Northern Ireland (also the Mace Head station in the Republic of Ireland) during Quarter 4 of 2015. The table is followed by details of individual station-specific issues.

Table 4.6 Data Capture Northern Ireland - Quarter 4 (Oct-Dec) 2015

| Name                      | СО    | NO <sub>2</sub> | O <sub>3</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | Average |
|---------------------------|-------|-----------------|----------------|------------------|-------------------|-----------------|---------|
| Armagh Roadside           |       | 6.79            |                | 31.48            |                   |                 | 19.13   |
| Ballymena Ballykeel       |       |                 |                |                  |                   | 69.38           | 69.38   |
| Belfast Stockman's Lane   |       | 99.82           |                | 99.95            |                   |                 | 99.89   |
| Belfast Centre            | 99.77 | 95.52           | 95.56          | 99.82            | 99.77             | 99.77           | 98.37   |
| Derry                     |       | 99.86           | 99.91          | 93.48            | 99.86             | 99.95           | 98.61   |
| Lough Navar               |       |                 | 99.14          | 98.82            |                   |                 | 98.98   |
| Mace Head                 |       |                 | 100.00         |                  |                   |                 | 100.00  |
| Number of Stations        | 1     | 4               | 4              | 5                | 2                 | 3               | 7       |
| Number of stations < 85 % | 0     | 1               | 0              | 1                | 0                 | 1               | 2       |
| Number of stations < 90%  | 0     | 1               | 0              | 1                | 0                 | 1               | 2       |
| Average                   | 99.77 | 75.50           | 98.65          | 84.71            | 99.82             | 89.70           | 83.48   |

### **Armagh Roadside**

The station has had no LSO or ESU support throughout the year, and as a result of insufficient calibrations, the NOx data have been deleted. The FDMS analyser failed the baseline check carried out by the QA/QC Unit and data have been deleted.

#### Ballymena Ballykeel

Data was of poor quality from 16 October to 13 November, when a new lamp was fitted by the ESU. These data were deleted during ratification.

# 4.7 Changes to Previously Ratified Data

The following data from previous quarters have been changed as a result of the ratification process for this quarter (all 2015 unless otherwise stated):

- Bush NO<sub>2</sub>, rescaled September, ratified using incorrect cylinder concentration.
- Blackpool Marton PM<sub>2.5</sub>, 13-14 July, isolated period of data deleted following review of annual dataset.
- Carlisle NO2, 1 July-30 September, data reprocessed.
- Ealing Horn Lane PM<sub>10</sub>, 3 February-13 May and 21 July-4 August, regional outlier, data deleted following review of annual dataset.
- Edinburgh St Leonards NO<sub>2</sub>, deleted 9 December 2014-31 December 2015, sampling fault.
- Exeter Roadside ozone, 1 January-31 December, data deleted, suspected analyser fault.

- Ladybower, NO<sub>2</sub>, SO<sub>2</sub> and ozone-deleted 1 January-30 September, sampling fault.
- Leominster NO<sub>2</sub>, 1 July-30 September, data reprocessed.
- London Westminster NO<sub>2</sub>, 16-30 September, data reprocessed.
- St Osyth, NO<sub>2</sub>, 1 January-30 September, data reprocessed.
- Stoke-on-Trent A50 Roadside, NO2, 1 July-30 September, ratified using incorrect cylinder concentration.
- Wicken Fen SO<sub>2</sub>, 1 July-30 September, data reprocessed.
- Thurrock, ozone and NO<sub>2</sub>, 1 July-30 September, data reprocessed.
- York Fishergate PM<sub>2.5</sub> 30-31 August, noisy data deleted, loose filter.

A list of changes to ratified data is given at http://uk-air.defra.gov.uk/data/changes-to-ratified-data .

## 4.8 Zero Baseline Correction

Until 2016, the only agreed action that could be taken in the event of a zero baseline response outside the range ±3 µg m<sup>-3</sup> was to reject data. However, as of 2016, as part of ongoing improvement activities a protocol has been agreed to enable PM baselines to be corrected where baseline responses exceed 3 µg m<sup>-3</sup>. Baseline correction has been incorporated into the data ratification protocols as of 2016 and the 2015 dataset has also been retrospectively reviewed, and baseline corrections applied where appropriate.

The following particulate data were rescaled:

- Belfast Centre PM<sub>10</sub>: data reinstated from 12<sup>th</sup> June-28<sup>th</sup> July and baseline corrected from 10<sup>th</sup> June to 4<sup>th</sup> October 2015.
- Belfast Centre PM<sub>2.5</sub>: baseline corrected 26<sup>th</sup> June-22<sup>nd</sup> September 2015.
- Birmingham Acocks Green PM<sub>2.5</sub>: data reinstated from 26<sup>th</sup> April-1<sup>st</sup> September and baseline corrected from 2<sup>nd</sup> January – 1<sup>st</sup> September 2015.
- Birmingham Tyburn PM<sub>10</sub>: data reinstated 26<sup>th</sup> April 29<sup>th</sup> August and baseline corrected from 2<sup>nd</sup> January – 28<sup>th</sup> August 2015.
- Birmingham Tyburn PM<sub>2.5</sub>: data reinstated 26<sup>th</sup> April 29<sup>th</sup> August and baseline corrected 2<sup>nd</sup> January – 28th August 2015.
- Bristol St Pauls PM<sub>2.5</sub>:data reinstated 3<sup>rd</sup> 5<sup>th</sup> October and baseline corrected 11 August-29 September 2015.
- Chepstow A48: PM<sub>2.5</sub> baseline corrected 1<sup>st</sup> January-23<sup>rd</sup> July 2015.
- Edinburgh St Leonards PM<sub>10</sub>: data deleted from 29<sup>th</sup> January 3<sup>rd</sup> August and baseline corrected 29th January-24th August 2015
- Glasgow Townhead PM<sub>10</sub>: data reinstated 24th March 4th August 2015 and baseline corrected 24th March - 4th August 2015.
- Grangemouth PM<sub>10</sub>: data reinstated 1st May 17th August and baseline corrected 29th January – 17<sup>th</sup> August 2015.
- Learnington Spa Rugby Road: PM<sub>2.5</sub> baseline corrected 18th August 31st December 2015
- Leeds Centre PM<sub>10</sub>: data reinstated 14<sup>th</sup> February 14<sup>th</sup> July and baseline corrected 14<sup>th</sup> February -14<sup>th</sup> July 2015.
- London Bexley PM<sub>2.5</sub>: data reinstated 1<sup>st</sup> May 30<sup>th</sup> June and 13<sup>th</sup> August 31<sup>st</sup> December and baseline corrected 1st January – 31st December 2015.
- London Bloomsbury PM<sub>10</sub>: baseline corrected 6<sup>th</sup> August 31<sup>st</sup> December 2015.
- London Bloomsbury PM<sub>2.5</sub>: data reinstated 27th March 30th June and baseline corrected 2nd April – 5<sup>th</sup> August 2015.
- London Harlington PM<sub>10</sub>: baseline corrected 6<sup>th</sup> February 22<sup>nd</sup> July 2015.
- London Harlington PM<sub>2.5</sub>: baseline adjusted 6<sup>th</sup> June 31<sup>st</sup> December 2015.

- London Teddington Bushy Park PM<sub>2.5</sub>: data reinstated 13<sup>th</sup> August 15<sup>th</sup> September.
- Middlesbrough PM<sub>10</sub>: baseline corrected 1<sup>st</sup> June 31<sup>st</sup> December 2015.
- Newcastle Centre PM<sub>10</sub>: data reinstated 26<sup>th</sup> March 9<sup>th</sup> September and baseline corrected 1<sup>st</sup> January – 31<sup>st</sup> December 2015.
- Newcastle Centre: PM<sub>2.5</sub> data reinstated 1<sup>st</sup> May 30<sup>th</sup> June and data deleted from 9<sup>th</sup> 17<sup>th</sup> September due to valve seal fault.
- Norwich Lakenfields PM<sub>10</sub>: data reinstated 2<sup>nd</sup> February 1<sup>st</sup> March and baseline corrected 1<sup>st</sup> February 1<sup>st</sup> March 2015.
- Plymouth PM<sub>10</sub>: data reinstated 9<sup>th</sup> 30<sup>th</sup> September.
- Saltash Callington Road PM<sub>10</sub>: data reinstated 12<sup>th</sup> 15<sup>th</sup> April and 9<sup>th</sup> -16<sup>th</sup> May 2015.
- Sheffield Devonshire Green PM<sub>2.5</sub>: baseline corrected 24<sup>th</sup> July 31<sup>st</sup> December 2015.

(Note: in the above cases, where the period of baseline correction is listed as being to 31st December 2015, it would usually be the case that the correction extends into 2016).

# 5 Health and Safety Report 2015

The risk status of the following monitoring stations was raised to "High" on the Health & Safety Database during 2015. This list includes all Defra monitoring networks, not just the AURN, as the QAQC contractor acts as health and safety co-ordinator for all monitoring networks. All the problems were satisfactorily resolved. Issues which were erroneously raised as "High" have been discounted.

Table 5.1 Summary of High Risk Occurrences 2015

| Station                    | Issue/Problem                                                                                                | Date went to 'High' | Date resolved |
|----------------------------|--------------------------------------------------------------------------------------------------------------|---------------------|---------------|
| Sheffield Tinsley          | Failed Electrical Safety Test                                                                                | 13/04/2015          | 30/04/2015    |
| Reading New Town           | Unsecured NO cylinder nearly fell on an LSO due to missing strap.                                            | 18/05/2015          | 28/05/2015    |
| Northampton<br>Kingsthorpe | Station has failed the 5 yearly Periodic Inspection Review (PIR) electrical inspection.                      | 21/05/2015          | 28/05/2015    |
| Leicester A594<br>Roadside | Failed station electrical test. Electrical supply installed was not adequate for later installation of FDMS. | 13/07/2015          | 04/09/2015    |
| Carlisle Roadside          | Major overhaul of car park in which it is located, presence of dumper trucks etc.                            | 11/08/2015          | 13/08/2015    |
| London Teddington          | Station closed to all visitors for removal of asbestos from surrounding building.                            | 12/08/2015          | 04/09/2015*   |
| Southampton Centre         | 13/10/2015: Station failed 5 yearly PIR due to inadequate main earth connection.                             | 13/10/2015          | 26/10/2015    |
| St Osyth                   | Station failed 5 yearly PIR.                                                                                 | 14/10/2015          | 22/10/2015    |

<sup>\*</sup>The building was closed for further asbestos removal in 2016. A further closure of at least 12 months is planned, for major refurbishment. The decision was made to mothball the site.

### Total Hits on AURN Hub for 2015

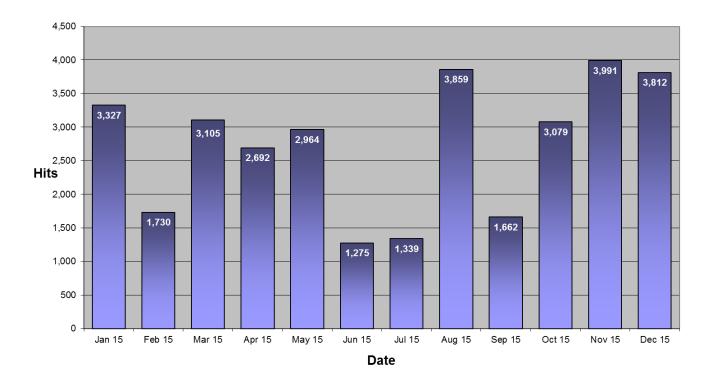



Figure 6.1 Usage Statistics for the AURN Hub

# 7 Equipment Upgrade Requirements

# 7.1 Equipment

As can be seen from the asset list in Section 8, many of the ozone photometers used by the QA/QC Unit are of considerable age, and consideration should be given to replacing the oldest ones in the near future. All of the Sabio™ instruments listed are no longer in a serviceable condition.

# 8 Inventory of Defra-Owned Equipment

This section provides an updated list of all Defra-owned equipment used by the QAQC unit. Not all equipment listed is in operational condition.

Table 8.1 Current Asset List as held by Ricardo Energy & Environment

| Contract      | Location                    | Asset                                | Serial<br>number | Date in service | Operational |
|---------------|-----------------------------|--------------------------------------|------------------|-----------------|-------------|
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | API model<br>M401                    | 123              | 01/04/1999      | N           |
| AURN<br>QA/QC | Glasgow                     | API model<br>M401                    | 151              | 01/10/2000      | Υ           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | API model<br>M401                    | 176              | 01/12/2002      | Υ           |
| AURN<br>QA/QC | Glasgow                     | API model<br>M401                    | 291              | 01/05/2004      | Υ           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | API model<br>M402                    | 245              | unknown         | Υ           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | API model<br>M401                    | 292              | 01/05/2004      | Υ           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | API model<br>M401                    | 293              | 01/05/2004      | Υ           |
| AURN<br>QA/QC | Glasgow                     | API model<br>M703                    | 255              | 01/01/2010      | Υ           |
| AURN<br>QA/QC | Glasgow                     | Sabio 2010<br>dilution<br>calibrator | 03740708         | 01/02/2005      | N           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | Sabio 2020<br>dilution<br>calibrator | 02720306B        | 01/06/2006      | N           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | Sabio 2020<br>zero air<br>generator  | 02710306B        | 01/06/2006      | N           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | Sabio 2020<br>zero air<br>generator  | 03731208C        | 01/03/2006      | N           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | Sabio 2030<br>ozone<br>photometer    | 7820708          | 01/03/2008      | N           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | Sabio 2010<br>dilution<br>calibrator | 02940306A        | 01/03/2008      | Y           |
| AURN<br>QA/QC | Glasgow                     | Drycal flow<br>meter                 | 110085           | unknown         | N           |
| AURN          | Harwell - Ludbridge         | Drycal flow                          | 107881           | 2006            | Υ           |

| Contract      | Location                    | Asset                                            | Serial<br>number           | Date in service | Operational |
|---------------|-----------------------------|--------------------------------------------------|----------------------------|-----------------|-------------|
| QA/QC         | Mill                        | meter                                            |                            |                 |             |
| AURN<br>QA/QC | Glasgow                     | Drycal low flow meter                            | 6699                       | 2002            | N           |
| AURN<br>QA/QC | Glasgow                     | Sabio 2020<br>zero air source                    | 03620708b                  | 2006            | N           |
| AURN<br>QA/QC | Glasgow                     | Sabio 2020<br>zero air source                    | 03711208c                  | 2006            | N           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | Sabio 2020<br>zero air source                    | 03701208c                  | 2006            | N           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | AC31 dual<br>chamber NOx<br>analyser             | 1672                       | 01/03/2003      | Υ           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | TEI 43C SO <sub>2</sub><br>analyser              | 386                        | 01/03/2003      | Υ           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | TEI 48C CO<br>analyser                           | 48C-<br>77631-386          | 01/03/2003      | Υ           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | M265<br>chemilumines-<br>cent ozone<br>analyser  | 066, ET<br>number<br>16373 | 01/03/2003      | Υ           |
| AURN<br>QA/QC | Glasgow                     | API<br>fluorescent<br>S02 Analyser<br>Model 100A | 1572                       | unknown         | Υ           |
| AURN<br>QA/QC | Glasgow                     | Thermo NO-<br>NO2-NOx<br>Analyser<br>Model 42c   | 42c-56236-<br>307          | unknown         | Υ           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | API model<br>M703                                | 278                        | 30/06/2010      | Υ           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | API model<br>M703                                | 279                        | 30/06/2010      | Υ           |
| AURN<br>QA/QC | Mace Head                   | Ozone<br>analyser<br>Thermo 49i                  | 713021785                  | unknown         | Y           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | Ozone<br>analyser<br>Thermo 49i                  | 713021784                  | unknown         | Y           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | API model<br>M703                                | 254                        | 06/01/2010      | Y           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | API model<br>M703                                | 18942                      | 06/01/2010      | Υ           |
| AURN          | Harwell - Ludbridge         | Casella                                          | 0411771                    | 01/04/2016      | Y           |

| Contract      | Location                    | Asset             | Serial<br>number | Date in service | Operational |
|---------------|-----------------------------|-------------------|------------------|-----------------|-------------|
| QA/QC         | Mill                        | ML2010            |                  |                 |             |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | BIOS<br>flowmeter | 132883           | 27/8/2013       | Υ           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | BIOS<br>flowmeter | 134028           | 13/12/2013      | Υ           |
| AURN<br>QA/QC | Harwell - Ludbridge<br>Mill | BIOS<br>flowmeter | 133530           | 13/12/2013      | Υ           |

# 9 Improved Technology

# 9.1 Improvements Introduced

No new technologies have been introduced into the network during 2015.

#### **Conclusions** 10

## 10.1 Annual Data Capture 2015

The data capture across the whole network for 2015 is given in Table 10.1.

Table 10.1 Annual Data Capture, 2015

| Name | СО    | NO <sub>2</sub> | O <sub>3</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | Annual<br>Average |
|------|-------|-----------------|----------------|------------------|-------------------|-----------------|-------------------|
| 2015 | 96.06 | 92.02           | 93.85          | 88.35            | 91.11             | 89.93           | 91.53             |

The network average data capture was 91.53%, with 23 (compared to 31 in 2014) stations failing to meet the target of 85% and 38 being below 90%. Principal reasons for data loss include station infrastructure upgrades, sampling faults, poor analyser performance and persistent temperature problems.

Figure 10.1 shows average data capture from the AURN from 1992-2015.

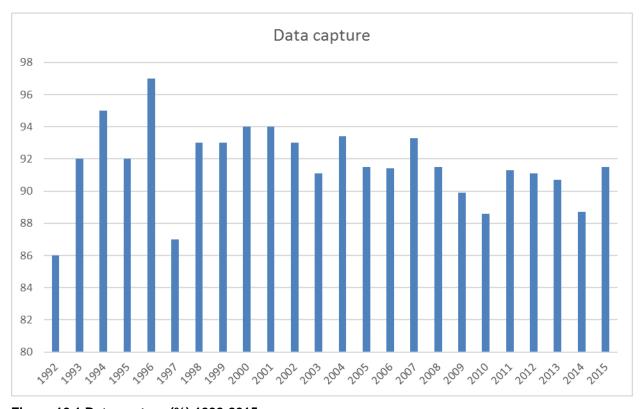



Figure 10.1 Data capture (%) 1992-2015

# 10.2 Stations where Data Capture was Below 85%

Table 10.2 shows the stations that failed to meet the requirement for 85% data capture across all the pollutants in 2015.

| Station                          | Annual Data capture 2015 (%) |
|----------------------------------|------------------------------|
| Sheffield Tinsley                | 84.81                        |
| Sandy Roadside                   | 84.66                        |
| London Hillingdon                | 84.26                        |
| Storrington Roadside             | 83.96                        |
| Auchencorth Moss                 | 83.76                        |
| Carlisle Roadside                | 83.67                        |
| Saltash Callington Road          | 83.22                        |
| Newport                          | 82.83                        |
| London Teddington Bushy<br>Park  | 82.21                        |
| Chesterfield Loundsley<br>Green  | 81.67                        |
| Wicken Fen                       | 81.63                        |
| Eastbourne                       | 81.07                        |
| Shaw Crompton Way                | 79.71                        |
| Great Dun Fell                   | 79.25                        |
| Edinburgh St Leonards            | 78.14                        |
| Newcastle Cradlewell<br>Roadside | 74.39                        |
| Ealing Horn Lane                 | 66.10                        |
| Sheffield Devonshire Green       | 63.63                        |
| Southwark A2 Old Kent Road       | 58.09                        |
| Widnes Milton Road               | 57.79                        |
| Exeter Roadside                  | 49.67                        |
| Armagh Roadside                  | 48.00                        |
| Ladybower                        | 4.38                         |



The Gemini Building Fermi Avenue Harwell Didcot Oxfordshire OX11 0QR United Kingdom

t: +44 (0)1235 753000 e: enquiry@ricardo.com

ee.ricardo.com