

Report on measures for 2019 exceedance of the Target Value for Benzo[a]pyrene in Swansea Urban Area agglomeration zone (UK0027)

December 2021

© Crown copyright 2021

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v.3. To view this licence visit <u>www.nationalarchives.gov.uk/doc/open-government-licence/version/3/</u> or email <u>PSI@nationalarchives.gov.uk</u>

This publication is available at www.gov.uk/government/publications

Any enquiries regarding this publication should be sent to us at

Air Quality and Industrial Emissions Department for Environment, Food and Rural Affairs Ground Floor, Seacole Building 2 Marsham Street London, SW1P 4DF

Email: air.quality@defra.gov.uk

With technical input from Ricardo Energy & Environment

www.gov.uk/defra

Contents

1. Introduction	4
1.1 Context	4
1.2 Status of zone	4
2 Exceedance situation Swansea Urban Area [B[a]P_UK0027_2019_1] related to industrial emissions	6
2.1 Description of exceedance	6
2.2 Source apportionment	10
2.3 A detailed local assessment	12
2.4 Measures	13

1. Introduction

1.1 Context

Under the Air Quality Standards Regulations 2010¹, the target value (TV) for Benzo[a]pyrene (B[a]P) is an annual mean concentration of 1 nanogram (one billionth of a gram (10⁻⁹)) per cubic metre (m⁻³) of ambient air or lower. The regulation requires the UK to report on measures in place to address the exceedance of the TV and that all reasonable measures that do not entail disproportionate cost should be taken to ensure this target is not exceeded.

The UK will continue to meet its reporting obligations through making this data available to the public to the same timescales.

Exceedance of the TV was reported in 2013, 2014, 2015, 2016, 2017 and 2018 in the Swansea Urban Area. A report on measures was published detailing the exceedance and the measures in place².

This document reports the exceedance situation for 2019 reflecting the more recent assessment and updating the 2013, 2014, 2015, 2016, 2017 and 2018 report on measures.

1.2 Status of zone

This is the report on measures required for exceedances of the TV for B[a]P within the Swansea Urban Area zone identified within the 2019 UK air quality assessment. Exceedances within this zone were identified on the basis of model results providing supplementary information for the assessment in addition to the results from fixed monitoring stations. This exceedance was reported via e-Reporting dataflow G³ on attainment for the compliance assessment in 2019 when the UK was a member state and Air Pollution in the UK⁴.

Table 1 summarises the spatial extent and associated resident population for the exceedances identified in this zone, as reported via e-Reporting.

¹ The Air Quality Standards Regulations 2010 (legislation.gov.uk)

² <u>https://uk-air.defra.gov.uk/library/bap-nickel-measures</u>

³ <u>http://cdr.eionet.europa.eu/gb/eu/aqd</u>

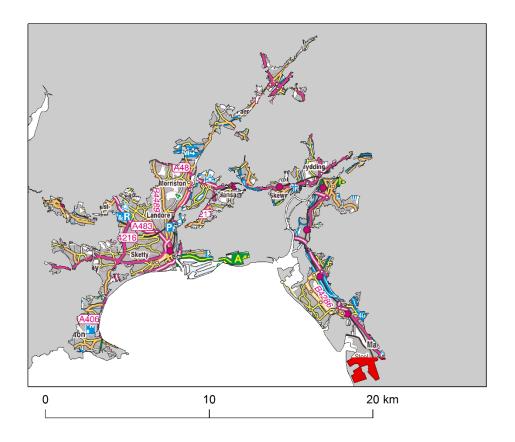

⁴ <u>http://uk-air.defra.gov.uk/library/annualreport/index</u>

Table 1. Area exceeding B[a]P target value in 2019 and associated populationfor Swansea Urban Area zone UK0027

Zone	Zone Name	Area exceeding TV	Population
code		(km ²)	exceeding TV
UK0027	Swansea Urban Area	2	100

Figure 1 shows the locations of the exceedances in the context of the zone as a whole.

Figure 1. Location of exceedance of the B[a]P target value during 2019 in Swansea Urban Area zone UK0027. Areas of the zone in exceeding grid squares are marked red.

An initial source apportionment was carried out and this analysis has identified a single exceedance situation in this zone:

 Swansea Urban Area [B[a]P_UK0027_2019_1] related to industrial emissions (area of exceedance 2 km²) Following the approach developed for the previous report on measures for 2014, a subsequent more detailed modelling assessment was carried out for 2015, 2016, 2017 and 2018 using additional local data. Whereas the 2014 assessment concluded that there was unlikely to be exceedance of the TV outside the boundary of the industrial site in 2014, the more recent assessments indicate that it was likely that there was an exceedance of the TV at locations close to the industrial site in 2015, 2016, 2017 and 2018. This change has been linked to the adoption of an improved assessment method for fugitive emissions, which has led to a significant increase in reported coke ovens emission in recent years and is discussed later in this report. The following section details the exceedance situation in the zone including a description of the exceedance situation, maps, information on source apportionment and a list of measures already taken or to be taken.

2 Exceedance situation Swansea Urban Area [B[a]P_UK0027_2019_1] related to industrial emissions

2.1 Description of exceedance

This exceedance situation has an area of exceedance of 2 km² in Margam in Neath Port Talbot. Figure 2 shows the location of the exceedance situation, as predicted by the national model. The exceeding grid squares are numbered in Figure 2 and in subsequent tables for easy reference. The resident population associated with this exceedance situation is 100, all being in the exceeding grid square numbered 2. This exceedance situation is adjacent to and shares common sources with the exceedance situation South Wales [B[a]P_UK0041_2019_1].

The fixed monitoring station at Port Talbot Margam is within the exceedance situation. Table 2 lists the measured concentrations of B[a]P in this zone since 2008. The measured and modelled concentrations at this station were below the TV in 2020.

Table 2. Measured annual mean B[a]P concentrations in Swansea Urban Area agglomeration zone UK0027 from 2008 to
2020 (ngm ⁻³). (Percentage data capture is shown in brackets).

Station (Eol code)	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Port Talbot Margam	0.53	0.39	0.38	0.40	0.40	0.44	0.60	0.79	0.93	0.64	0.70	0.32	0.34
(GB0906A)	(99)	(95)	(88)	(95)	(95)	(93)	(100)	(100)	(95)	(93)	(98)	(99)	(100)
Swansea Cwm Level Park	0.32	0.24	0.29	0.27	0.28	0.27	0.33	0.35	0.39	0.33	0.28	0.23	0.19
(GB0943A)	(90)	(89)	(84)	(93)	(96)	(92)	(100)	(100)	(100)	(97)	(99)	(96)	(96)

Table 3 lists the exceeding grid squares and the resident population.

The measurements at Port Talbot Margam were less than the TV. In modelling the spatial coverage of B[a]P concentrations, the national scale model predictions were calibrated to match the measurements. The calibrated predictions exceeded the target in the vicinity of the steelworks industrial complex in Port Talbot due to industrial emissions. 1 km grid squares have been classified as exceeding the TV if at least nine 100 m grid squares exceed the TV or at least one 100 m grid square exceeds and there is residential population in the exceeding 100 m grid squares. A concentration value was defined for each 1 km grid square from the fine scale modelling as the mean of the 100 m grid squares exceeding the TV within that 1 km grid square. Subsequent finer scale modelling that included a more detailed assessment also predicted exceedances of the TV at locations close to the industrial site in 2015, 2016, 2017 and 2018. The assessment is discussed in more detail in section 2.3.

Figure 2 shows the locations of the key industrial sources. The area shown on this map includes grid squares assigned to both the Swansea Urban Area (UK0027) and South Wales (UK0041) zones. The grid squares assigned to the Swansea Urban Area zone and this exceedance situation - Swansea Urban Area [B[a]P_UK0027_2019_1] are shown as hatched (in this report) and the non-hatched red grid squares correspond to exceedance situation South Wales [B[a]P_UK0041_2019_1] (discussed in the <u>South Wales zone UK0041</u> report).

Figure 2. Exceedance situation Swansea Urban Area [B[a]P_UK0027_2019_1]. Exceeding grid squares are marked red. Locations of coke works at Morfa and sinter plant at Port Talbot are also shown. Hatched grid squares are those assigned to Swansea Urban Area zone UK0027 (this report). Non-hatched grid squares are assigned to South Wales zone UK0041 and do not form part of this exceedance situation (see UK0041 report).

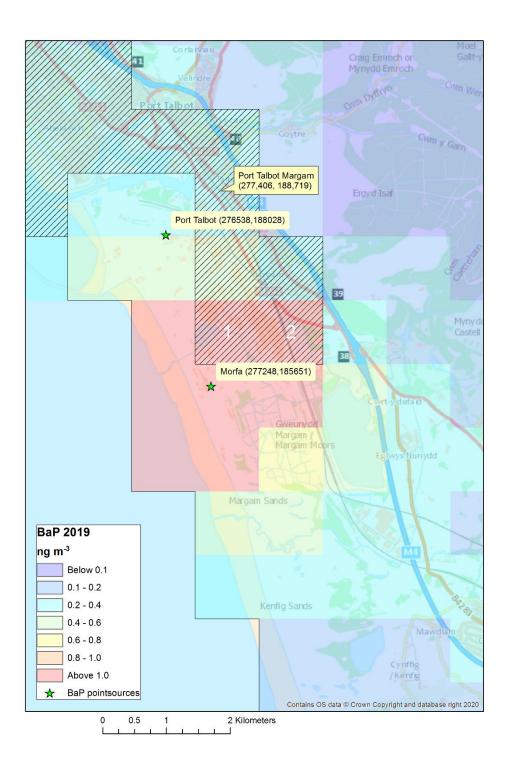


Table 3. Exceeding grid squares for exceedance situationBaP_UK0027_2019_1.

Grid square number	Resident population	Notes
1	0	Steelworks industrial complex
2	100	Partly steelworks industrial complex, Margam

2.2 Source apportionment

Table 4 provides a breakdown of the main emission sources (source apportionment) that have contributed to the grid squares in this exceedance situation, highlighting the significant contribution from industrial sources. The penultimate column is the total from all emission sources. The values in this column have been rounded to 1 decimal place for consistency with the values used in the compliance assessment. The values in the other columns have not been rounded. The other shaded columns are the subtotals for the regional, urban background and local contributions. Table 5 gives a more detailed source apportionment indicating how the separate industrial processes contribute to the total industrial figure. This shows that the coke ovens at Morfa are the main sources associated with this exceedance situation.

Table 4. Source apportionment for exceedance situation Swansea Urban Area [B[a]P_UK0027_2019_1]. Annual mean B[a]P	
concentration (ngm ⁻³).	

Grid square number	OS easting (m)	OS Northing (m)	Zone	a) Regional background: Total	 b) Urban background increment: Total 	Urban background increment: Traffic	Urban background increment: Industry including heat and power production	Urban background increment: commercial and residential	Urban background increment: Shipping	Urban background increment: Off road mobile machinery	Urban background increment: Other	c) Local increment: Total	Local increment: Industry including heat and power production	Total for all emission sources (a+b+c)	Resident population
1	277500	186500	27	n/a	0.039	0.008	0.001	0.026	0.000	0.001	0.003	2.638	2.638	2.7	0
2	278500	186500	27	n/a	0.118	0.076	0.001	0.031	0.000	0.006	0.005	1.228	1.228	1.3	100

Table 5. Detailed source apportionment for industrial sources only for exceedance situation Swansea Urban Area [B[a]P_UK0027_2019_1]. Annual mean B[a]P concentration (ngm⁻³)

Grid square number	OS easting (m)	OS Northing (m)	Zone	Morfa coke ovens	Port Talbot sinter plant	Local increment: Industry including heat and power production
1	277500	186500	27	2.637	0.001	2.638
2	278500	186500	27	1.226	0.001	1.228

2.3 A detailed local assessment

In order to assess this exceedance in more detail, a dispersion modelling assessment is usually undertaken by NRW, making use of local data. Tata Steel Works is the major fixed B[a]P source in the local area. The background concentration for this assessment is derived from the difference between local measurements at Margam monitoring site and modelled process contribution from the Steel Works at the Margam site. This assessment approach has worked well in the last six years. The Steel Works emissions accounted for up to 50% of the B[a]P measured at the Margam site. This year (for 2019 reporting), the modelling compliance assessment was unable to be completed because while the Steel Works emissions and meteorological conditions remained similar to the previous years a very significant (more than 50% compared to previous years) reduction was measured at the Margam site. This leads to a negative background concentration, namely, the model predicted Steel Works' contribution would account for all the measurement at the Margam site. Investigations are currently underway to identify the problem by reviewing the B[a]P measurements data at Margam site, emissions data and modelling approach.

2.4 Measures

The main overview report contains more information on how industrial sites are regulated. The Industrial Emissions Directive (IED) (2010/75/EU) sets out control emissions within specific industrial sectors like iron & steel. There are no specific Best Available Techniques (BAT) conclusions within the IED Iron and Steel (IS) BAT Reference Document (BREF)⁵, specifically setting out any BAT Associated Emissions Limits or direct techniques or measures to prevent or minimise B[a]P emissions. However, there are some narrative and specific BAT Conclusions to indirectly prevent or minimise B[a]P emissions by reducing fugitive or point source particulate emissions. Following the 2016 sector permit review to adopt the IS BAT Conclusions, permit conditions relevant to Polycyclic Aromatic Hydrocarbons (PAH) emissions, transposed these with a focus on the Coke Ovens and the Sinter Plant that are the main sources and mass release of B[a]P pollutant. The IS BREF contains stringent requirements for iron and steel works to significantly reduce their fugitive emissions (especially particulate matter), indirectly including PAH and subsequently (B[a]P emissions.

Reason for increases in reported coke oven emissions and next steps

In 2015 the implementation of the BREF for Iron and Steel production, resulted in the need to improve the monitoring of fugitive emissions from the coke ovens.

The method employed prior to 2015 (BCRA method) required an estimate to be carried out every three months that relied on a subjective assessment of leak severity. The industrial operator agreed a new method with the regulator (NRW) that was adapted from the US EPA methodology. This methodology requires the leaks be monitored and recorded daily and does not attribute a severity to the leaks, all leaks are treated as a priority. When both methods were assessed side by side it was clear that the BCRA method gave a favourable estimation of the fugitive emission resulting in a low estimation factor per tonne of coke. The new methodology has resulted in an increase in the estimation of B[a]P released from the coke ovens in 2015, however, the actual release is likely to have been similar to previous years.

The change in the methodology has meant that the operator has a better understanding of the precise sources of fugitive emissions and enabled a targeted improvement programme to be established. This improvement programme was expected to show a decrease in results in 2017 and 2018. Monitoring has shown a decrease in 2017 but a slight increase in 2018 caused by a high result in May, with subsequent months showing a return to a lowering trend that continues into 2019

⁵ http://eippcb.jrc.ec.europa.eu/reference/BREF/IS Adopted 03 2012.pdf

and 2020. The site regulator will continue to focus on better performance through regulatory work and will review the interventions following analysis of the 2019 and 2020 data.

Table 6 shows the measures taken or to be taken at Port Talbot industrial site.

Measure code	Description	Classification	Implementation dates	Other information	Comment	Future work
Coke Ovens 1	Measures to meet new fugitive BAT emission limits BAT- Associated Emission Levels (BAT- AELs) BAT- Associated Emission Performance Levels (BAT- AEPLs)	Permit systems and economic instruments: IED permits	Start: 2015 Expected end: 2027 (tied to lifespan of asset). Status: Implementation	Source affected: Industry including heat and power production Spatial scale: Local Cost: Not available Indicator: Emissions estimate Target emissions reduction: Not available	 TATA Steel has adopted a modified US EPA method for fugitive release assessment. This method uses a binary 'leak-no leak' assessment and directly compares to the BATc. TATA has previously committed to coke ovens life extension expenditure worth ~£3m/year over three years. The coke ovens life extension project is ongoing, and TATA continues to invest in this area. Compliance with the new limits has been summarised below for tops, doors and charging emissions. Where compliance has not been achieved, NRW has responded in accordance with its Compliance Classification Scheme (CCS) and has worked with TATA to achieve compliance with the BAT-AELs and AEPLs. NRW continues to apply CCS scores in response to any notifiable emission limit breaches. 	Fugitive releases from Morfa Coke Ovens (MCO) are affected by the internal operating pressure of the ovens. This pressure is at its highest when ovens are initially charged with coal and there is the maximum production of coke oven gas (COG). The rate of COG production gradually decreases as the contents of the oven are carbonised. TATA has optimised the gas pressure controls on individual ovens to improve the overall control system and therefore minimise fugitive releases of B[a]P from its coke oven batteries. MCO's operational lifespan is projected to be the late-2020s thanks to the life extension project. As the coke oven batteries age, the likelihood of permit non- compliances and elevated emissions may increase despite the life extension measures. As MCO progresses towards the end of its extended campaign life, TATA should outline its strategy for this key asset and clarify its preferred method of iron &

Table 6. Table of measures taken or to be taken at Port Talbot industrial site

					An EPR Regulation 61 Notice was used in 2018; TATA's response included an action plan with timescales outlining a pathway towards compliance. This Notice and TATA's action plan remained active during 2019. Compliance with the relevant emission limits (BAT-AEPLs) for coke oven doors, tops and charging emissions has been sustained since February 2019. MCO remains an important part of NRW's compliance inspection programme for Port Talbot steelworks and we continue to apply regulatory effort to ensure the permit requirements are met.	steelmaking going forwards. Other critical assets necessary for integrated iron & steelmaking (using Blast Furnace technology) are also approaching the end of their projected design life e.g. sinter plant. Replacement coke ovens may require significant planning (~5yrs design & construction) and capital expenditure (>£500m). Further notices will be considered by NRW if environmental performance deteriorates, and repeated CCS scores are incurred for emission limit breaches at MCO.
Coke Ovens 2	Spigot improvements. The spigot is the joint between the	Permit systems and economic instruments: IED permits	Start: 2015 Expected end: 2019 Status: Achieved	Source affected: Industry including heat and power production	Control of fugitive emissions from coke ovens will result in lower B[a]P emissions. The BAT-AEPL (Associated Emission Performance Level) for coke oven tops is 1% leakage	It should be noted that as the ovens age, the likelihood of permit non- compliances and elevated emissions may increase despite the life extension measures. At MCO there are two COG collection mains for each oven and

oven and the gas main. Measures include fitting of new collars, 'repacking' existing spigot seals, fitting new seals and shortening of ascension pipes.	Spatial scale: Localrate (99% leak free). A sequenti programme of work has been ongoing to progressively reduce leakage. This has been balance against the complexities of working on live coke oven batteries (ovens are kept in continuous operation).Indicator: Percentage leak rate reduced to target of 1%Significant effort has been applie by TATA to reduce fugitive emissions from coke oven tops. Improved performance has coincided with secured capital expenditure (coke ovens life extension project) and an optimised maintenance regime involving rolling replacement of ascension pipes and repair/re- sealing of spigots.TATA has also overhauled its COG collector main control systems and renewed its gas pressure imbalances and greate protection for spigot componentNRW has responded to any identified permit non-compliance	 completed a feasibility study for converting MCO to a single COG collection main. A single main would significantly reduce the number of emission points along the coke oven battery tops; however, TATA's feasibility study and cost-benefit analysis does not support a viable single COG main conversion. The overhauled and renewed COG pressure control systems at MCO should – with sufficient maintenance – allow effective control of emissions from coke oven tops. This work has been combined with control improvements at the MCO Exhauster unit which draws COG from the coke oven batteries. TATA has trialled mechanical spigots on some ovens but has concluded that its current programme of prioritising and (manually) repairing/re-sealing spigot joints is sufficient to maintain performance.
--	--	---

	February 2019. Compliance with the BAT-AEPL for tops has since been sustained over many months.
	Target achieved (<1% leakage) but ongoing maintenance is necessary to sustain compliance.
	Coke Ovens performance is discussed at least every quarter with Tata Steel. Sustained compliance may become more challenging as the batteries approach the end of their campaign life.

Coke Ovens 3	Coke Oven door improvements Each coke oven has two sets of doors at either end. Hot coke is pushed from the 'ram side' doors through the 'coke side' doors through the 'coke side' doors into waiting rail cars. Doors and door frames require regular maintenance and periodic replacement to minimise fugitive emissions.	Permit systems and economic instruments: IED permits	Start: 2015 Expected end: 2019 Status: Achieved	Source affected: Industry including heat and power production Spatial scale: Local Cost: Not available Indicator: Percentage leak rate reduced to target of 10% Target emissions reduction: Not available	Control of fugitive emissions from coke ovens will result in lower B[a]P emissions. The BAT-AEPL (Associated Emission Performance Level) for coke oven doors is 10% leakage rate (90% leak free). A sequential programme of work has progressively reduced door leakage. This has been balanced against the complexities of working on live coke oven batteries (ovens are kept in continuous operation). An optimised coke oven door cleaning, maintenance and repair programme is in place at MCO. TATA has standardised its door cleaning methods and invested in new jetting equipment. TATA also periodically replaces degraded doors and door seals. The door leakage rate has dropped noticeably across both batteries. Improved performance has coincided with secured capital expenditure (coke ovens life extension project) and refinement of maintenance plans and procedures. NRW has responded to any identified permit non-compliance in accordance with its Compliance in accordance with its Compliance classification Scheme (CCS).	It should be noted that as the ovens age, the likelihood of permit non- compliances and elevated emissions may increase despite the life extension measures. Leaks from coke oven doors occur when hot gases penetrate the seals between the door and its frame. Doors and frames are routinely cleaned to ensure a tight seal. At MCO, a 'knife-edge' door seal design is employed. Previously TATA considered a remotely controlled cleaning device for the small 'leveller' doors which are difficult to clean. This has been abandoned for technical reasons. TATA's door cleaning programme targets leveller doors and seals to provide equivalent cleaning. TATA has trialled a new type of coke oven door (with tighter 'z' seals). However, increased cleaning efficiency, improved knife- edge seal design and optimised maintenance has resulted in better door sealing. Door frame cleaning functionality also exists on MCO's ram and guide machines. The scope of TATA's door trial has evolved and is now part of its continuous improvement initiatives at MCO. The Original Equipment
-----------------	--	--	--	--	---	---

					Significant progress has been made with 90% leak free performance achieved in August 2018. Compliance with the BAT- AEPL for doors has since been sustained over many months. Target achieved (<10% leakage) but ongoing maintenance is necessary to sustain compliance. Coke Ovens performance is discussed at least every quarter with Tata Steel. Sustained compliance may become more challenging as the batteries approach the end of their campaign life.	Manufacturer (OEM) is examining the existing door design to minimise and potentially eliminate manual intervention. More generally, TATA should outline its future strategy for MCO and clarify its preferred method of iron & steelmaking going forwards, within a wider context of developing low-carbon steelmaking technology.
Coke Ovens 4	Reduction of emissions during charging Coke ovens are 'charged' with coal through	Permit systems and economic instruments: IED permits	Start: 2015 Expected end: 2019 Status: Achieved	Source affected: Industry including heat and power production Spatial Scale: Local	Control of fugitive emissions from coke ovens will result in lower B[a]P emissions. BAT-AEPL for visible emissions from charging is <30 seconds per charge expressed as a monthly mean. A sequential programme of work has progressively reduced charging emissions. This has been balanced against the	It should be noted that as the ovens age, the likelihood of permit non- compliances and elevated emissions may increase despite the life extension measures. TATA continues to follow a rolling maintenance programme for its coke oven charging equipment. This includes surveying charge holes and correcting mis-aligned charge hole frames.

charge holes in the top of each oven. The charging nozzles, oscillators, holes and lids all require regular maintenance and periodic replacement to minimise fugitive emissions.	Cost: Not availablecomplexities of working on live coke oven batteries (ovens are kept in continuous operation).Indicator: Duration of release reduced to 30 seconds as a monthly mean.Key items of equipment (charg holes and the coal charging apparatus) have now all been refurbished and/or replaced.Target emissions: Not availableCharging emissions have drop noticeably across both batterie often achieving around 20 seconds visible emissions per charge as a monthly average. Improved performance has coincided with secured capital extension project) and refinem of maintenance plans and procedures.NRW has responded to any identified permit non-complian in accordance with its Complia Classification Scheme (CCS).Significant progress has been made and charging emissions have been compliant with the BAT-AEPL since February 201 Compliance has since been sustained over many months.Target achieved (<30 second visible emissions per charge but ongoing maintenance is	 Automatic systems to seal charge hole lids and clean carbon residues from holes and frames have been considered with technical input from the Original Equipment Manufacturer (OEM). TATA has determined that its current programme of manual sealing and cleaning provides an equivalent level of performance. TATA has indicated that it will retain a dedicated resource going forwards for charge hole lid sealing and carbon cleaning. More generally, TATA should outline its future strategy for MCO and clarify its preferred method of iron & steelmaking going forwards, within a wider context of developing low-carbon steelmaking technology. 9.
--	---	--

					necessary to sustain compliance. Coke Ovens performance is discussed at least every quarter with Tata Steel. Sustained compliance may become more challenging as the batteries approach the end of their campaign life.	
Coke Ovens 5	Reduction of emissions during coke pushing Finished coke is pushed from each oven into specially designed rail cars. A mobile guide car and fume extraction system (also known as a coke-side fume arrestment	Permit systems and economic instruments: IED permits	Start: 2015 Expected end: 2020 Status: Implementation	Source affected: Industry including heat and power production Spatial Scale: Local Cost: Not available Indicator: Compliance with 20 mg/m ³ BAT- AEL. Reduced numbers of black pushes	Control of fugitive emissions from coke ovens will result in lower B[a]P emissions. The BAT-AEL for coke pushing (dust) emissions is 10mg/m ³ for bag filters and 20mg/m ³ in all other cases, measured using discontinuous monitoring (spot sampling) A venturi scrubber system is used at Port Talbot; therefore, the applicable emission limit is 20mg/m ³ . This has been reflected in TATA's permit since 2015 (no change). There have been no verified breaches of the BAT-AEL since it came into force. Oven heating issues can result in poorly carbonised batches of	Discontinuous sampling has been retained for monitored emissions from coke pushing. TATA has progressed its repair programme for coke oven flues and regenerators. This work involves targeting ovens with damaged/degraded flues and regenerators, but also developing a better understanding of how this influences black push emissions. Some oven walls (with embedded flues) are also being repaired. TATA's capital expenditure (coke ovens life extension project) is allowing delivery of this work. Refurbished and enhanced coke- side fume arrestment system is now fully commissioned and online as of July 2021. Project delivery has been impacted by factors such

system) is used at Port Talbot to capture fugitive (dust) emissions from coke pushing.	emissions: Not available	coke. When pushed, visible emissions increase ('black pushes') and can overwhelm the fume extraction system. Availability of the guide car and fume extraction system can also influence fugitive emission levels. MCO's original system dated from the 1980s and has suffered reliability issues. The system has since been refurbished and now comprises a replacement hood, extraction system, guide car and ducting. The new system has enhanced fume capture capability. Water sprays have been used during the period of unavailability to 'knock down' fugitive emissions from coke pushing. There is a rolling programme of repair & refurbishment for the oven gas (heating) flues. Coke oven temperature profiles and coke yields are positively affected by keeping as many gas flues as possible in working order. The difficulty associated with this work increases as the batteries age. NRW has introduced a reporting metric for the number of black	as delayed crane lifts (bad weather) and Covid-19 business disruption. Black push numbers are being monitored by NRW to assess if TATA's interventions are having a positive influence on environmental performance. More generally, TATA should outline its future strategy for MCO and clarify its preferred method of iron & steelmaking going forwards, within a wider context of developing low-carbon steelmaking technology.
---	-----------------------------	---	---

		pushes at the coke ovens. This	
		data is now reported quarterly and	
		is harmonised with other similar	
		reporting requirements.	
		Target achieved (20mg/m ³ for	
		particulates) but ongoing	
		maintenance is necessary to	
		sustain compliance.	
		Black pushes are scrutinised	
		using new performance metric	
		(see above)	
		(
		Coke Ovens performance is	
		discussed at least every quarter	
		with Tata Steel. Sustained	
		compliance may become more	
		challenging as the batteries	
		approach the end of their	
		campaign life.	

Sinter Plant	Improvements to Lignite Injection	Permit systems and economic instruments:	Start: 2015 Expected end: estimated 2025	Source affected: Industry including heat	Lignite-lime injection forms part of several projects to ensure that the sinter plant complies with tighter EU (IED) standards.	A range of factors have delayed the implementation of the lignite-lime injection scheme. This includes (but is not limited to) Covid-19 disruption and EU Exit impact.
	Lignite is used in combination with lime to trap and neutralise certain pollutants present in hot flue gases. These additives are injected directly into the hot flue gases. The integrity of the flues and the emissions abatement systems must be sound for lignite-lime injection to be used safely.	IED permits	Status: Implementation	and power production	 There are no specific BATc or BAT-AELs designed to reduce B[a]P from sinter plant emissions. However, reducing overall emissions will result in lower B[a]P emissions. Associated work and regulatory interventions by NRW to address persistent particulate emission limit (BAT-AEL) breaches from the sinter plant main stack should indirectly reduce B[a]P emissions from this source. Main stack particulate emissions: TATA responded to an EPR Regulation 61 Information Notice in August 2018. The company's response included an action plan with timescales outlining a pathway towards compliance. The lignite-lime injection system at Port Talbot has not yet been commissioned. To allow use of this technology at the sinter plant, some important preparatory steps must be completed first: Air ingress issues within the main stack waste gas system must be resolved. A key 	The interior of each ESP and the (waste gas) wind main system are subject to high temperatures and continual physical abrasion by entrained dust, which progressively wears away exposed surfaces and parts. Keeping pace with this degradation and maintaining an 'air- tight' system is critical to the safe commissioning of lignite-lime injection. Tata Steel has adjusted its maintenance strategy to allow shorter stops to be taken more frequently within a quarterly maintenance framework, enabling worn parts to be replaced before they degrade completely. The engineering challenges and associated unavailability of lignite- lime injection may increase as the sinter plant ages. Use of customised lime products as waste gas reagents is Tata's contingency plan should the air ingress issues prove insurmountable.

performance indica	
oxygen within the v	
stream - sensors a	
place to monitor thi	•
Upgraded valves a	
of each ESP (dust)	
hopper are subject	
maintenance progr	
Previously the valv	
were degrading too	
and allowing air inter-	o the method of iron & steelmaking going forwards. Other critical assets
system.	
Sinter process insta contributed to eleva	
emissions and deg performance. TATA	
several ongoing pro	i nao
address process in	
	within a wider context of developing
TATA continues to purs	
steps at the time of writ	
	A replacement sinter plant may
Bringing lignite-lime of	
prematurely can resu	
starting within the ma	
Electrostatic Precipita	
(ESPs) as a result of I	
(fuel) + heat + oxygen	
Tata has been explorin	ga
contingency solely invo	
use of lime products i.e	
There are customised I	me
compounds available th	
deliver similar levels of	
reagent performance a	
capable of removing m	
pollutants. These comp	ounds

	present a much lower risk of combustion compared to lignite and the impact of air (O2) ingress becomes less pronounced.	
	The Sinter Plant remains an important part of NRW's compliance inspection programme for Port Talbot steelworks and we continue to apply regulatory effort to ensure the permit requirements are met. NRW is currently working with TATA to agree new timescales for the implementation of lignite injection.	