AIR QUALITY EXPERT GROUP

Particulate Matter in the United Kingdom

Prepared for:
- Department for Environment, Food and Rural Affairs
- Scottish Executive
- Welsh Assembly Government
- Department of the Environment in Northern Ireland

PB10580
Nobel House
17 Smith Square
London SW1P 3JR
www.defra.gov.uk
This is the second report produced by the Air Quality Expert Group.

United Kingdom air quality information received from the automatic monitoring sites and forecasts may be accessed via the following media:
Freephone Helpline 0800 556677
TELETEXT page 156
Internet http://www.airquality.co.uk
http://www.defra.gov.uk/environment/airquality/

Department for the Environment, Food and Rural Affairs
Nobel House
17 Smith Square
London SW1P 3JR
Telephone: 020 7238 6000

© Crown copyright 2005

Copyright in the typographical arrangement and design rests with the Crown.

This publication may be reproduced free of charge in any format or medium provided that it is reproduced accurately and not used in a misleading context. The material must be acknowledged as Crown copyright with the title and source of the publication specified.

Further copies of the publication are available from:
Defra Publications
Admail 6000
London SW1A 2XX
Telephone: 08459 556000

This document is also available on the AQEG website at:
http://www.defra.gov.uk/environment/airquality/aqeg

Published by the Department for the Environment, Food and Rural Affairs.
Printed in April 2005 on material containing 80% post-consumer waste and 20% elemental chlorine-free pulp.

Product code PB10580 ISBN 0-85521-143-1

The picture of TEOMs is reproduced with kind permission from Dr Paul Quincey.
The pictures of the dust cart and breaking waves are reproduced with kind permission from Mr David Carslaw.
The map is reproduced with kind permission from Mr John Stedman.

When referencing this document, please use the following phrasing:
Terms of reference

The Air Quality Expert Group was set-up in 2001 to provide independent scientific advice on air quality, in particular the air pollutants contained in the Air Quality Strategy (AQS) for England, Scotland, Wales and Northern Ireland and those covered by the EU Directive on ambient air quality assessment and management (the Air Quality Framework Directive). AQEG replaces the Airborne Particles Expert Group, who published their report on Source apportionment of airborne particulate matter in the UK in January 1999.

AQEG reports to the Secretary of State for Environment, Food and Rural Affairs, Scottish Ministers, the National Assembly for Wales and the Department of the Environment in Northern Ireland (the Government and Devolved Administrations). AQEG is an advisory non-departmental public body in England, Wales and Northern Ireland. In terms of the Scotland Act 1998, the Group is a jointly established body.

AQEG’s main functions are:

- to give advice to ministers on levels, sources and characteristics of air pollutants in the UK;
- to assess the extent of exceedences of Air Quality Strategy objectives and proposed objectives, EU limit values and proposed or possible objectives and limit values, where monitoring data are not available;
- to analyse trends in pollutant concentrations;
- to assess current and future ambient concentrations of air pollutants in the UK; and
- to suggest potential priority areas for future research aimed at providing a better understanding of the issues that need to be addressed in setting air quality objectives.

The Group will not give approval for products or equipment.

Further information on AQEG can be found on the Group’s website at: http://www.defra.gov.uk/environment/airquality/aqeg/index.htm

Information on these pages includes the dates, agendas, and minutes of meetings as they become available, a list of the members, the Register of Interests and draft and final reports as they become available.
Air Quality Expert Group membership

Chair

Professor Mike Pilling
School of Chemistry, University of Leeds

Members

Professor Helen ApSimon
Department of Environmental Science and Technology, Imperial College London

Dr David Carruthers
Cambridge Environmental Research Consultants (CERC)

David Carslaw
Institute for Transport Studies, University of Leeds

Dr Roy Colvile
Department of Environmental Science and Technology, Imperial College London

Professor Dick Derwent OBE
rdscientific

Dr Steve Dorling
School of Environmental Sciences, University of East Anglia (UEA)

Professor Bernard Fisher
National Centre for Risk Assessment and Options Appraisal, Environment Agency

Professor Roy Harrison OBE
Division of Environmental Health and Risk Management, University of Birmingham

Dr Mathew Heal
Department of Chemistry, University of Edinburgh

Professor Duncan Laxen
Air Quality Consultants Ltd

Dr Sarah Lindley
School of Geography, University of Manchester

Dr Ian McCrae
Environment Group, TRL Limited (Transport Research Laboratory)

John Stedman
Netcen, a part of AEA Technology plc
Ad-hoc members

Professor Mike Ashmore
University of Bradford

Dr Mike Jenkin
Department of Environmental Science and Technology, Imperial College London

Dr Peter Woods
Analytical Science Group, National Physical Laboratory

Ex Officio members

Central Management and Control Unit of the automatic urban and rural networks: **Stephen Moorcroft**, Air Quality Consultants Ltd
(representing Casella Stanger)
National Atmospheric Emissions Inventory: **Dr Tim Murrells**, Netcen, a part of AEA Technology plc
Hydrocarbon monitoring networks: **Dr Paul Quincey**, Analytical Science Group, National Physical Laboratory
Quality Assurance and Quality Control of the automatic urban network and the Non-automatic monitoring networks: **Ken Stevenson**, Netcen, a part of AEA Technology plc

Assessors and observers

Dr Antje Branding (to September 2004)
Scottish Executive

Joan Forteath (from September 2004)
Scottish Executive

Dan Kennedy
Department of the Environment in Northern Ireland

Professor Bob Maynard
Department of Health

Dr Havard Prosser
Welsh Assembly Government

Secretariat

Dr Janet Dixon
Air and Environment Quality Division, Defra

Dr Sarah Honour (to September 2004)
Air and Environment Quality Division, Defra

Ingrid Holmes (from September 2004)
Air and Environment Quality Division, Defra

John Rea
Air and Environment Quality Division, Defra
Acknowledgments

The Group would like to acknowledge the following individuals and organisations for their help in the preparation of this report.

- Dr Wenche Aas, NILU, Norway for provision of elemental and organic carbon data.

- Bob Appleby (Birmingham City Council), Alan Webb (Innogy), Kevin Brown (Powergen), Carrie Harris (Heathrow Airport Limited) and various local authorities participating in the Netcen Calibration Club for providing the Group with data for the pro forma. Bob Appleby also provided long-term trend data for PM$_{10}$ and PM$_{2.5}$.

- Dr Paul Boulter of TRL for his contribution in the area on non-exhaust particulate emissions from road transport.

- Dr Aurelie Charron, Dr Alan Jones and Mr Salah S. Abdalmogith of the University of Birmingham for provision of data and data analyses.

- Gary Fuller, David Green and Ben Barratt at ERG, King’s College London for their help in compiling, processing and interpreting air pollution data.

- Dr Mark Gibson of the University of Strathclyde for the provision of particulate matter compositional data for Glasgow.

- Kate Johnson and Amy Stidworthy of CERC for provision of ADMS model output for Chapter 8.

- Dr Richard Maggs, Ms Yvonne Brown and Dr David Harrison at Casella Stanger who processed some of the data used in Chapter 5 and contributed to the report.

- Neil Passant, Melanie Hobson, Chris Dore, Rob Stewart, Martin Adams and Kate Haigh at Netcen for their contributions to Chapter 4 and Andrew Kent, Susannah Grice, Jaume Targa, Paul Cumine, Jeff Lampert also at Netcen for their contributions to other parts of the report, particularly areas focusing on air quality trends.

- Dr Alison Redington of the Met Office for provision of NAME model results used in Chapter 8 and Mr Derrick Ryall of the Met Office for analyses of the air mass origins of the Saharan dust and Russian forest fires particle episodes used in Chapter 6.

- CEH Edinburgh, EMEP and the University of Edinburgh for provision of modelling data.

- The Highways Agency for access to those data from their network of roadside air pollution monitoring stations.

- All local authorities for use of their air quality data.
Table of contents

Executive summary

Chapter 1: Introduction
1.1 Particulate matter 6
1.2 Health effects of particulate matter 7
1.3 Emissions 7
1.4 Measurements of particulate matter 8
1.5 Modelling 9
1.6 Policy background
 1.6.1 International legislation and agreements 9
 1.6.2 National framework 11
1.7 Structure of the report 13

Chapter 2: What is particulate matter?

Key points
2.1 Introduction 16
2.2 Key physical characteristics of airborne particles 18
 2.2.1 Nucleation mode 19
 2.2.2 Accumulation mode 19
 2.2.3 Coarse particle mode 19
 2.2.4 Number, surface area and volume size distributions 20
 2.2.5 Semi-volatile components 21
2.3 Chemical composition of airborne particles 23
 2.3.1 Major components 23
 2.3.2 Minor components 24
2.4 Mass closure of airborne PM 25
2.5 Source apportionment
 2.5.1 Dispersion modelling 27
 2.5.2 Receptor modelling 27

Chapter 3: What is causing the health effects of particles?

Key points
3.1 Introduction 29
3.2 The health impact of particles in the UK 31
3.3 Evidence for adverse health effects from specific physical/chemical components of PM$_{10}$ 32
 3.3.1 Fine particles (PM$_{2.5}$) 32
 3.3.2 Ultrafine particles (PM$_{0.1}$) 33
 3.3.3 Coarse particles (PM$_{coarse}$) 33
 3.3.4 Total surface area of particles 34
 3.3.5 Chemical constituents of particles 34
 3.3.5.1 Sulphate, acidity and other major inorganic ions 34
 3.3.5.2 Trace metals 34
 3.3.5.3 Organic components 35
3.3.6 Interactions between physicochemical properties of particles 36
3.3.7 Particle source 36
3.4 Summary of current understanding 37
Chapter 4: Sources of particles in the UK

4.1 Introduction

4.1.1 Scope

4.1.2 Legislation and regulatory framework controlling emissions

4.1.2.1 Control of industrial sources of particles

4.1.2.2 Control of emissions from road vehicles

4.1.2.3 Control of emissions from other transport and machinery

4.1.2.4 Control of emissions from other sources

4.1.2.5 National emissions ceilings

4.2 Sources of primary emissions

4.2.1 Estimation of emissions

4.2.2 Transport

4.2.2.1 Particle formation mechanisms and definitions

4.2.2.2 The regulatory test for exhaust emissions of PM

4.2.2.3 Particle size and number emissions by vehicle and fuel type and legislation class

4.2.2.4 Estimating emissions from road transport

4.2.2.5 Exhaust emission factors for PM

4.2.2.6 Road transport activity data

4.2.2.7 Cold start emissions

4.2.2.8 Non-exhaust road transport PM

4.2.2.9 Road vehicle tyre wear

4.2.2.10 Road vehicle brake wear

4.2.2.11 Estimation of tyre and brake wear emissions

4.2.2.12 Road vehicle resuspension

4.2.2.13 Other non-exhaust road vehicular emissions

4.2.2.14 Emission factors for other transport

4.2.2.15 Rail

4.2.2.16 Aircraft

4.2.2.17 Shipping

4.2.2.18 Non-road mobile machinery

4.2.2.19 Chemical composition of PM emissions from transport sources

4.2.3 Stationary sources

4.2.3.1 Overview of stationary sources

4.2.3.2 Derivation of emission estimates

4.2.3.3 Power stations

4.2.3.4 Industrial and commercial combustion processes

4.2.3.5 Domestic combustion

4.2.3.6 Coke and SSF manufacture

4.2.3.7 Cement and lime processes

4.2.3.8 Iron and steel industry

4.2.3.9 Aluminium production

4.2.3.10 Chemical processes

4.2.3.11 Bricks, tiles, refractories and ceramics

4.2.3.12 Other processes

4.2.3.13 Mining and quarrying

4.2.3.14 Construction

4.2.3.15 Waste incineration

4.2.3.16 Agriculture
4.2.3.17 Foot and mouth pyres 71

4.2.3.18 Chemical composition of PM emissions from stationary sources 72

4.2.4 A recent review of particulate matter emission factors for industrial processes and combustion 72

4.2.4.1 Review of industry processes 72

4.2.4.2 Review of emissions from the combustion of natural gas 74

4.2.4.3 Review of emissions from mining, quarrying and construction 74

4.2.5 Fireworks and associated fires 74

4.3 Secondary particle precursors 75

4.3.1 Origin of secondary particles 75

4.3.2 Sulphate 75

4.3.3 Nitrate 76

4.3.4 Ammonium 78

4.3.5 Organics 78

4.4 Emission estimates by source type 80

4.4.1 Directly estimated primary emissions 80

4.4.2 Emissions of PM_{2.5} and fine PM 82

4.4.3 Emissions of particle precursors 83

4.4.3.1 NO_x emissions 83

4.4.3.2 SO_2 emissions 84

4.4.3.3 NMVOC emissions 85

4.4.3.4 NH_3 emissions 85

4.4.4 Biogenic emissions 85

4.4.5 Local emissions inventories 86

4.4.6 Changes in the 2002 NAEI 88

4.4.7 Uncertainty in national emissions estimates 90

4.4.7.1 Quantification of uncertainties in emission estimates for sources covered in the inventory 90

4.4.7.2 Sources omitted in the inventory 92

4.4.7.3 Local emissions in critical areas and ratio of NO_x 93

4.5 Time series of emissions 94

4.5.1 UK emissions 94

4.5.1.1 Stationary fuel combustion 94

4.5.1.2 Production processes 95

4.5.1.3 Road transport 95

4.5.2 Emission trends by particle size: the 2001 NAEI time series 96

4.5.3 Emissions by fuel type 96

4.5.3.1 Public power 96

4.5.3.2 Commercial, residential and institutional combustion 98

4.5.4 Trends in PM_{10} – PM_{2.5} emissions 98

4.5.5 Trends in UK precursor emissions 100

4.5.5.1 Temporal trends of NO_x emissions 100

4.5.5.2 Temporal trends of SO_2 emissions 101

4.5.5.3 Temporal trends of NMVOC emissions 101

4.5.5.4 Temporal trends of NH_3 emissions 102

4.5.6 Trends in the PM_{10} to NO_x ratio 102

4.5.7 Emissions of primary particulates in Europe 103

4.5.8 Emissions of PM precursor gases in Europe 105
4.5.9 UK emission projections
4.5.9.1 Assumptions for non-road transport sources
4.5.9.2 Assumptions for road transport sources
4.5.9.3 Baseline PM emission projections for urban
 UK road transport
4.5.10 Baseline PM emission projections for all UK sources
4.5.11 Baseline emission projections for PM precursor
 pollutants from all UK sources
 4.5.11.1 SO₂
 4.5.11.2 NOₓ
 4.5.11.3 NMVOCs
 4.5.11.4 NH₃
4.6 Emissions controls and abatement technologies
 4.6.1 Abatement of industrial emissions of particles
 4.6.2 Abatement of emissions from road vehicles
4.7 Impact of policies on particle emissions
 4.7.1 The impact of increased diesel car penetration
 4.7.2 An evaluation of policies and regulations affecting
 emissions from the road transport sector in the UK
 4.7.3 Low emission zones
 4.7.4 London congestion charging scheme (CCS)

Chapter 5: Methods for monitoring particulate concentrations
 Key points
 5.1 Introduction
 5.2 Overview of PM monitoring methods
 5.2.1 Introduction
 5.2.2 Size-selective inlet heads
 5.3 PM₁₀ monitoring methods
 5.3.1 Filter-based gravimetric samplers
 5.3.2 TEOM analysers
 5.3.3 β-attenuation analysers
 5.3.4 Optical analysers
 5.3.5 Black smoke method
 5.3.6 Personal samplers
 5.4 Comparison of PM₁₀ monitoring methods
 5.4.1 Introduction
 5.4.2 EU Working Group paper on equivalence
 5.4.2.1 Background
 5.4.2.2 The equivalence procedure for PM₁₀
 in EN 12341
 5.4.2.3 The equivalence procedure for PM₁₀ in the draft
 EC Guidance Document
 5.4.3 The UK PM₁₀ intercomparison exercise
 5.5 Measurement of PM₂.₅ (and PM₁) concentrations
 5.5.1 Methods of measurement
 5.5.2 Development of CEN reference method for PM₂.₅
 5.6 Measurement of nuisance dusts
 5.7 Measurement of ultrafine particles
 5.7.1 Particle number measurements
 5.7.2 Measurement of particle surface area
5.8 Measurement of metals, PAH and major ions 143
5.8.1 Metals 143
5.8.2 PAH 143
5.8.3 Major ions 143
5.9 Continuous monitoring of speciated PM 143
5.10 The UK monitoring networks 144
5.10.1 Monitoring networks for PM$_{10}$ and PM$_{2.5}$ 144
5.10.1.1 UK networks 144
5.10.1.2 Regional networks 147
5.10.1.3 Other networks 148
5.10.1.4 PM$_{2.5}$ monitoring networks 149
5.10.2 Black smoke monitoring network 150
5.10.3 PAH monitoring network 151
5.10.4 Heavy metals monitoring networks 151
5.10.5 Major ions and elemental and organic carbon in PM 152
5.10.6 Ultrafine particles 154
5.11 Measurement uncertainty and quality assurance and control 154

Chapter 6: What do the measurements tell us? 155

Key points 155

6.1 Overview of PM mass concentration data 158
6.1.1 Introduction 158
6.1.2 Relationships of PM metrics 160
6.1.3 Relationship between PM$_{2.5}$ and PM$_{10}$ 160
6.1.4 Specific components of airborne particles 163
6.1.4.1 Metals: network data 163
6.1.4.2 Metals: other data 163
6.1.4.3 PAHs 166
6.1.4.4 Black smoke 169
6.1.4.5 Elemental and organic carbon 170
6.1.4.6 Airborne chloride measurements at inland sites 176
6.1.5 Mass closure model for airborne particulate at roadside and background sites 177
6.1.6 Chemical composition of roadside and urban background particles and the roadside increment 181
6.1.7 Apportionment of urban background PM$_{10}$ in Glasgow using mass-closure model 182

6.2 Spatial distribution of PM 183
6.2.1 Spatial distribution of PM$_{10}$ within and between Edinburgh and Glasgow 183
6.2.2 Regional distribution of PM$_{10}$ and PM$_{2.5}$ concentrations across London 184
6.2.3 Background concentration surfaces of PM$_{10}$ in London 187
6.2.3.1 Annual mean background concentrations in London 187
6.2.3.2 Spatial distributions of PM$_{10}$ in London under episode conditions 191
6.2.4 Roadside concentration distribution 195
6.2.5 Roadside increments of PM$_{10}$, PM$_{2.5}$ and PM$_{coarse}$ 196
6.2.6 Spatial distribution of secondary constituents across the UK 199
6.3 Episodicity of particle concentrations
6.3.1 Monthly exceedences of air quality objective concentrations 202
6.3.2 Episodicity of specific components 203
6.3.3 Saharan dust episodes 204
6.3.4 Sea salt aerosol 206
6.3.5 Biomass-burning fires as a source of particles 209
6.3.6 PM from construction activities 214

6.4 Use of correlations, concentrations or chemistry to elucidate particle sources
6.4.1 Comparison of PM concentrations with measurements of other pollutants 219
6.4.2 Weekday/weekend differences at traffic-influenced sites 226
6.4.3 Influence of air mass back trajectory and weather type on PM concentrations 228
6.4.4 Analysis of trends in PM concentrations by wind direction 229
6.4.5 Coarse particles at Marylebone Road: sources and concentrations 235
6.4.5.1 Concentrations measured at Marylebone Road 235
6.4.5.2 Local sources of PM$_{\text{coarse}}$ at Marylebone Road 238
6.4.5.2.1 Traffic 238
6.4.5.2.2 Construction and demolition activities 239
6.4.6 Estimation of the resuspension emission rate at Marylebone Road 239
6.4.7 Particle resuspension at the Manor Road site, London 242
6.4.8 Contribution to ambient particle concentrations from power stations 243
6.4.9 Industrial sources: Port Talbot case study 244

6.5 Particle number: concentrations and size distributions
6.5.1 Particle number concentrations 249
6.5.2 Particle number size distributions at a rural (Harwell), urban (Bloomsbury) and roadside (Marylebone Road) sites 252
6.5.3 Particle formation from vehicle emissions at Marylebone Road 254
6.5.4 NanoSMPS data at Marylebone Road 257
6.5.5 Homogenous nucleation events at Harwell 258

Chapter 7: What are the main trends in particulate matter in the UK? 261
Key points 261
7.1 Historical setting 263
7.2 Trends during the 1990s and onwards 265
7.2.1 Black smoke trends 265
7.2.2 Particulate sulphate trends 266
7.2.3 PM$_{10}$ trends 268
7.2.4 PM$_{2.5}$ trends 272
7.2.5 PM$_{\text{coarse}}$ trends 273
7.2.6 Ultrafine particle number trends 273
7.2.7 Normalised monthly mean PM$_{10}$ trends within the LAQN 274
7.2.8 Trends at sites close to motorways 275
7.2.9 Trends at the multi-element sites 275
Chapter 8: Modelling of particulate matter

Key points

8.1 Introduction

8.2 Current modelling and mapping methods

8.2.1 National models – Receptor and Mapping

8.2.1.1 Site-specific source apportionment using the APEG receptor model

8.2.1.2 Netcen mapping model

8.2.1.2.1 Contribution from point sources

8.2.1.2.2 Contribution from area sources

8.2.1.2.3 Secondary particle contributions

8.2.1.2.4 Coarse and other particles not included explicitly in the modelling

8.2.1.2.5 Roadside concentrations

8.2.1.2.6 Verification of the mapped values

8.2.1.2.7 PM$_{2.5}$ maps

8.2.2 Urban models

8.2.2.1 ERG PM$_{10}$ model and predictions

8.2.2.2 ADMS-Urban

8.2.3 Regional models

8.2.3.1 The EMEP model

8.2.3.2 The FRAME model

8.2.3.2.1 Model domain

8.2.3.2.2 Emissions

8.2.3.2.3 Chemistry

8.2.3.2.4 Wet deposition

8.2.3.2.5 Dry deposition

8.2.3.2.6 Meteorology

8.2.3.3 The NAME model

8.2.4 Other models

8.2.4.1 Models for sources of PM due to wind generation, non-exhaust traffic emissions

8.2.4.2 Advanced transport models including aerosol dynamics

8.3 Comparison of model features

8.3.1 Netcen, ERG and ADMS-Urban models

8.3.2 Air pollution models for road traffic

8.4 Model outputs and comparisons

8.4.1 High resolution models up to national scale

8.4.1.1 Site-specific source apportionment

8.4.1.2 Mapped concentrations of PM$_{10}$

8.4.1.3 Site-specific projections at monitoring sites

8.4.1.4 Mapped concentrations for PM$_{2.5}$

8.4.2 Regional models

8.4.2.1 Comparison of modelled sulphate, nitrate and ammonium concentrations for the UK

8.4.2.2 Europe-wide calculations

8.5 Uncertainty in modelling PM

8.5.1 Methods for quantification of uncertainty and error

8.5.2 Results of uncertainty analysis

8.5.2.1 Annual average past concentrations of PM$_{10}$

8.5.2.2 Future projections
8.5.2.3 Other metrics of PM concentration
8.5.2.3.1 90th percentile
8.5.2.3.2 Higher percentile
8.5.2.3.3 PM$_{2.5}$
8.5.2.3.4 Finer particle size fractions and particle number

8.5.2.4 Sensitivity of air quality management outcome to model uncertainty

8.6 Conclusions and recommendations

Chapter 9: Discussion
9.1 Introduction
9.2 Answers to questions
9.3 Are the current assessment methods (emissions inventories, measurements and modelling) fit for purpose? How could they be improved?
9.3.1 Answer
9.3.1.1 Emissions inventories
9.3.1.2 Measurements
9.3.1.3 Modelling
9.3.2 Rationale
9.3.2.1 Emissions inventories
9.3.2.1.1 Uncertainty of annual emissions inventories
9.3.2.1.2 Local and episodic emissions
9.3.2.1.3 Improvements to the annual emissions inventories
9.3.2.1.4 Emissions in future years
9.3.2.2 Measurements
9.3.2.2.1 Relationships between episode days and annual means
9.3.2.2.2 Spatial representation
9.3.2.2.3 Measurements of PM$_{2.5}$
9.3.2.2.4 Chemical composition and source apportionment
9.3.2.3 Modelling
9.3.2.3.1 Secondary inorganic compound
9.3.2.3.2 Primary PM
9.3.2.3.3 Residual component
9.3.2.3.4 Air pollution episodes and daily limit values and objectives
9.3.2.3.5 Links between modelling and measurements
9.3.2.3.6 Inter-annual variation and extrapolation of trends
9.3.2.3.7 Other uncertainties when assessing exceedence of limits
9.4 Are there sources missing from (a) UK emissions inventories and (b) other European inventories
9.4.1 Answer
9.4.2 Rationale
9.5 Is the UK likely to achieve, with current abatement measures and technologies (a) the Stage I and indicative Stage II annual and daily mean PM$_{10}$ limit values in the First Air Quality Directive and (b) the Air Quality Strategy objectives for PM$_{10}$? If not, why not? What levels of PM$_{10}$ are likely to be achieved by current measures and policies?

9.5.1 Answer
9.5.2 Rationale
9.5.2.1 AQMAs and exceedences away from roads
9.5.2.2 Achievement of Stage II limit values and provisional air quality objectives
9.5.2.3 Site-specific projections
9.5.2.4 GIS-based modelling results

9.6 Will the UK be able to meet the range of targets for PM$_{2.5}$ as proposed in the draft CAFE Position Paper on Particulate Matter? If not, why not? What levels of PM$_{2.5}$ are likely to be achieved by current measures and policies?

9.6.1 Answer
9.6.2 Rationale

9.7 What are the practical maximum feasible reductions of PM$_{10}$ and PM$_{2.5}$ concentrations at (a) hotspots and (b) urban background, for example central London locations?

9.7.1 Answer

9.8 Where and what are the main source contributors to current and future concentrations of PM$_{10}$ and PM$_{2.5}$? What are the contributions of different sources to forecast exceedences of the EU limit values and UK objectives?

9.8.1 Answer
9.8.2 Rationale

9.9 What are the potential sources of abatement and types of measures to reduce particle concentrations at (a) hotspots, such as near busy roads, (b) at urban background, central London and (c) across the whole country? What role can local/national/EU-wide measures play in meeting targets? These measures should be defined as technical (for example, vehicle standards); non-technical (for example, traffic management systems); and international (for example, controlling European/ hemispheric emissions). Are there alternatives to emissions reduction?

9.9.1 Answer
9.9.2 Rationale

9.10 A number of recent studies (that is, the WHO report) have highlighted the health effects of certain components of PM (fines, ultrafines, particle number, metals and elemental/organic carbon). Where further abatement techniques are known, how might they specifically affect reduction of the different PM metrics (for example PM$_{10}$, PM$_{2.5}$, PM$_{1}$ and particle numbers) and chemical components?

9.10.1 Answer
9.10.2 Rationale
9.11 Ultrafines – what have we learned from the measured data, including source apportionment? Are the observed trends real?
9.11.1 Answer 382
9.11.2 Rationale 382
9.12 Source apportionment – how does the UK source apportionment for PM\(_{10}\), PM\(_{2.5}\) and other metrics compare with other modelling in Europe? Is road traffic more important than current models show?
9.12.1 Answer 382
9.12.2 Rationale 383
9.13 Can we explain the trends in measured PM\(_{10}\), sulphur and black smoke since 1992?
9.13.1 Answer 384
9.13.2 Rationale 385
9.14 What are the differences between strategies that address hotspots of exceedence and those that aim to reduce population exposure? Should policy evaluation consider impacts on population exposure as well as concentrations at specific locations?
9.14.1 Answer 385
9.14.2 Rationale 386

Chapter 10: Conclusions and recommendations 387
10.1 Particulate sulphate 387
10.2 Particulate nitrate 388
10.3 Elemental or black carbon 388
10.4 Organic carbon 389
10.5 PM\(_{10}\) 389
10.6 PM\(_{2.5}\) 390
10.7 Ultrafine particles 390
10.8 Particulate iron 390
10.9 Natural PM sources 391
10.10 Other manmade sources 391
10.11 Ozone and PM air quality 391
10.12 Projected exceedences of future air quality targets based on the Site-specific Receptor and Projections Model 392
10.13 Projected exceedences of future air quality targets based on dispersion modelling 392
10.14 Local air quality management 393
10.15 Future PM policy development 393
10.16 Summary of research recommendations 394
10.17 Summary 395

Abbreviations and glossary 397
Abbreviations 397
Glossary 401
| Annex 1: Regulation of the major industrial sources of particles in England and Wales | 417 |
| Annex 2: Emission limit values for different vehicle types in Europe | 418 |
| Annex 3: The regulatory test method, in-service emissions testing, the measurement of exhaust particles and particles research |
A3.1 Limitations of the regulatory test method	420
A3.2 In-service emissions testing	420
A3.3 Issues relating to the measurement of exhaust particles	421
A3.4 Particle research programmes	422
Annex 4: Summary of PM$_{10}$ and PM$_{2.5}$ monitoring methods in Europe	424
Annex 5: Performance of unheated β-attenuation analysers	426
Annex 6: Potential implications of the internal TEOM offset	
A6.1 Comparison of TEOM with gravimetric measurements	432
A6.2 Effect on PM$_{10}$ and PM$_{2.5}$ trends	433
A6.3 Effect on PM$_{10}$ to PM$_{2.5}$ ratios	434
A6.4 Effect on measured concentrations	434
Annex 7: Source apportionment calculations for PM and status of roadside monitoring sites	436
Annex 8: Sensitivity analysis of Netcen and ERG models	441
Annex 9: The estimated effect of the London congestion charging scheme on PM$_{10}$ concentrations	444
Executive summary

When commissioning this report, Defra and the Devolved Administrations asked the Air Quality Expert Group (AQEG) a number of questions that are shown, in abbreviated form, in Figure 1. AQEG’s answers to these questions, together with a rationale for each answer, are provided in Chapter 9. This executive summary provides a less detailed overview of the report and does not attempt to answer the questions explicitly.

Figure 1. Questions on particulate matter set by Defra and the Devolved Administrations for AQEG.

- Are the current assessment methods fit for purpose? How could they be improved?
- Are there sources missing from UK other European emissions inventories?
- Is the UK likely to achieve, with current abatement measures and technologies, the European Union limit values and the Air Quality Strategy objectives for PM$_{10}$? If not, why not? What levels of PM$_{10}$ are likely to be achieved by current measures and policies?
- Will the UK be able to meet the range of targets for PM$_{2.5}$ as proposed in the draft CAFE Position Paper on Particulate Matter?
- What are the practical maximum feasible reductions of PM$_{10}$ and PM$_{2.5}$ concentrations at hotspots and urban background, for example central London locations.
- Where and what are the main source contributors to current and future concentrations of PM$_{10}$ and PM$_{2.5}$? What are the contributions of different sources to forecast exceedences of the EU limit values and UK objectives?
- What are the potential sources of abatement and types of measures to reduce particle concentrations at hotspots, at urban background, central London and across the whole country? What role can local/national/ EU-wide measures play in meeting targets? Are there alternatives to emissions reduction?
- A number of recent studies have highlighted the health effects of certain components of particulate matter. Where further abatement techniques are known, how might they specifically affect reduction of the different particulate matter metrics and chemical components?
- What have we learned from the measured data on ultrafines, including source apportionment? Are the observed trends real? What fraction of ultrafine particles volatilise?
- How does the UK source apportionment for PM$_{10}$, PM$_{2.5}$ and other metrics compare with other modelling in Europe? Is road traffic more important than current models show? How is the coarser fraction accounted for?
Can we explain the trends in measured PM$_{10}$, sulphur and black smoke since 1992?

What are the differences between strategies that address hotspots of exceedence and those that aim to reduce population exposure? Should policy evaluation consider impacts on population exposure as well as concentrations at specific locations?

Properties of particulate matter

Atmospheric particulate matter consists of solid or liquid matter in sizes that range from a few nanometres (nm) in diameter to around 100 micrometres (100 µm). Its chemical composition includes sulphates, nitrates, ammonium, sodium chloride, elemental and organic carbon and a range of minerals. It contains both primary components, emitted directly into the atmosphere, and secondary components formed in the atmosphere by chemical reactions. The metric generally employed for particles in the UK is PM$_{10}$, which, to a good approximation, describes the mass of particles with a size of less than 10 µm diameter; similarly PM$_{2.5}$ describes the mass of particles with a size of less than 2.5 µm diameter. An older, but still useful, metric measures the blackness of particulate matter and is termed black smoke.

The balance of evidence currently available suggests that it is combustion-derived components of which PM$_{10}$ that are primarily responsible for the harmful effects on human health. These components are comprised predominantly of fine (less than 2.5 µm) and ultrafine (less than 100 nm) carbon-containing particles and may be enriched with trace metals or specific organic compounds. There is generally less evidence to connect secondary inorganic particulate matter and coarse particles with adverse health effects. However the latter, in particular, cannot be ruled out since certain sources of these particles may be enriched with components of putative high risk (for example, soluble trace metals). The coarse fraction also contains biological material such as pollen and may be proportionally enriched with endotoxin, both of which factors can lead to adverse health effects.

Objectives and limit values for concentrations of particulate matter

The Air Quality Strategy objectives for particulate matter are based on the health effects, which can result from both short-term and long-term exposure, and are linked mainly to respiratory and cardiovascular effects. The European Union limit value for PM$_{10}$ that came into force on 1 January 2005 is 50 µg m$^{-3}$ per 24-h period, with up to 35 exceedences per year allowed. The annual limit value that also came into force on 1 January 2005 is 40 µg m$^{-3}$. The European Union has proposed an indicative limit value that should be met by 1 January 2010. It is also 50 µg m$^{-3}$ per 24-h period, but the number of allowed exceedences is reduced to seven per year and the annual limit value is halved to 20 µg m$^{-3}$. The Air Quality Strategy adopted the 2005 values as objectives and the 2010 values as provisional objectives but modified them to make the annual objective more stringent (18 µg m$^{-3}$) in Scotland and less stringent (23 µg m$^{-3}$) in London. The 2010 limit values will be reviewed by the EC in the light of further experience and information and currently have no legal standing.
Sources of particulate matter and trends in emissions

Particulate matter derives from both human-made and natural sources. Road transport gives rise to primary particles from engine emissions, from tyre and brake wear and from other non-exhaust traffic emissions. Other primary sources include stationary combustion processes (industrial, commercial and domestic), quarrying, construction and non-road mobile sources; natural sources include sea spray and Saharan dust. Secondary particulate matter is formed from emissions of ammonia (NH₃), sulphur dioxide (SO₂) and nitrogen oxides as well as emissions of organic compounds both from combustion sources and vegetation.

There have been substantial reductions in emissions in recent decades. Primary UK PM₁₀ emissions fell from 570 kt in 1970 to 200 kt in 2000. A further fall of 28% is expected between 2000 and 2010 and predicted reductions in UK emissions of secondary precursors over this period range from 52% (SO₂) to 10% (NH₃). It is clear, however, that reductions will level off and total UK PM₁₀ emissions are expected to change little between 2010 and 2020 with current measures. The Department for Transport now expects greater market penetration of diesel cars in the UK than it had previously forecast and had been assumed in the earlier versions of the National Atmospheric Emissions Inventory used in the air quality models that are discussed in this report. This will lead to slightly higher PM₁₀ emissions than were originally predicted.

Monitoring of particulate matter

UK monitoring networks primarily use the tapered element oscillating microbalance (TEOM) analyser. This provides real-time data with a short time resolution that is essential for the delivery of up-to-date public information. The TEOM uses a heated inlet, which leads to losses of semi-volatile compounds. The European reference method uses an unheated, filter-based gravimetric method. This method provides 24-h concentrations some days after the measurement. The differences in sampling lead to some inconsistency in results. Currently, as an interim measure, TEOM values are scaled by a factor of 1.3 to account for the losses of semi-volatile components. This is not ideal, as the real factor is highly variable from day to day and place to place. It would therefore be advantageous to identify a continuous method of quantifying the semi-volatile components.

The Clean Air for Europe (CAFE) programme is currently considering the introduction of targets for PM₁₅. Only a small number of sites (15) in the UK have co-located monitoring of PM₁₀ and PM₂.₅. Although current evidence in this report indicates a strong correlation between daily PM₁₀ and PM₂.₅ concentrations, AQEG views this number as inadequate and recommends an increase in the number of sites measuring both.

Current measured concentrations and composition of particulate matter

The report collates measurements from 240 monitoring sites, including kerbside, roadside, urban background/centre, industrial and rural/remote locations. Data from these sites and from other measurements have been used to assess
Particulate Matter in the United Kingdom

sources, distributions and concentrations of particulate matter in the UK. Annual mean PM$_{10}$ concentrations are highest at roadside sites and lowest at rural sites, demonstrating the importance of road traffic as a source. There is evidence that the contribution of heavy duty vehicles is much greater than that of light duty vehicles. The concentration gradient between roadside, urban background and rural concentrations is much less pronounced than is found for nitrogen oxides and indicates a greater regional background contribution to PM$_{10}$. This regional background contribution is a substantial fraction of the total even in London. There is a considerable variability, from month to month, in the number of exceedences of 24-h average concentrations of 50 µg m$^{-3}$. This demonstrates episodicity in concentrations derived from a range of sources that contribute to PM$_{10}$. Episodes of high secondary particulate matter also result from air masses arriving in the UK from European sources during anticyclones. Other episodic sources include sea salt, Saharan dust and biomass burning. Locally elevated particulate matter concentrations can result from construction activities, local roads, industries and domestic premises burning solid fuel.

Observed and predicted trends in concentrations of particulate matter

Monitoring sites that have long enough records to establish trends show downward trends in PM$_{10}$ concentrations, but the steep decline observed over the period 1992–1999 has given way to a flattening out or even a slight increase over the period 2000–2003. It is unclear to what extent this change in behaviour arises from year-to-year variations in the weather. Black smoke records provide an 80-year record in London and show a decrease of a factor of about 50 over this period, largely as a result of the phase-out of coal burning. Measurements in London, though, show evidence of a slower decline in black smoke concentration over the last 10 years, related to emissions from diesel road traffic. Declines have also been seen in rural PM$_{10}$ measurements that can be related, in part, to reduced emissions of SO$_2$ and hence of production of secondary particulate sulphate. The overall reductions show, however, that other sources – primary or secondary – must also contribute to rural concentrations.

Attainability of the Air Quality Strategy’s objectives

Models incorporating assessments of future source strengths are used to predict future concentrations of particulate matter and likely exceedences of limit values and objectives in 2005 and 2010 as well as to develop mitigation policies. The models routinely used for national and local policy support in the UK include empirical components, based on monitoring data, and dispersion calculations. The diverse sources of particulate matter make predictions difficult and problems are encountered with: (i) the coarse fraction, which has a large range of sources, including road dust; (ii) the background concentrations and their dependence on both primary and secondary sources; and (iii) the increment in concentrations occurring at the road side. Calculations show the annual mean limit value set for 2005 being met nearly everywhere, but with some exceedences of the limit of 35 days with 24-hour averages above 50 µg m$^{-3}$, especially in London. However, substantial exceedences both of the more stringent indicative annual mean limit values and of the smaller number of days above 50 µg m$^{-3}$ suggested for 2010 are likely throughout the UK. It is clear, given the substantial background particulate matter concentrations and the extent of the exceedences, that the
additional reductions required by 2010 to meet the Stage 2 indicative limit values cannot be met by control of primary emissions alone.

Local air quality management is able to identify local hotspots that are not necessarily identified through national studies. Air Quality Management Areas (AQMAs) have been established by 63 local authorities where exceedences of the 2005 limit values for PM$_{10}$ are likely. The majority of these are for traffic sources, but there are also AQMAs for industrial, commercial and domestic sources of PM$_{10}$. The Action Plans being developed will help to ensure that concentrations are driven down in these areas, but will probably make only a marginal contribution to the wider reduction in particulate matter concentrations because of the substantial background contribution. The exception to this might be in London and other major conurbations, where many local authorities are working together to develop larger scale plans, for example, the low emission zone initiative being developed in London.

Enhancement of policy assessment and improvement of air quality

The modelling of particulate matter concentrations is inherently more complex than for other common pollutants because of the need to combine the contributions from different sources, for example, long-range transport of secondary particulate matter, primary contributions from urban sources and very local contributions from individual roads. Models perform reasonably well for current years, but the complexity of particulate matter and the manner in which source contributions may change adds to the uncertainty in predicting future concentrations. Further work is required to improve and refine the models and to check their accuracy with respect to the different components and their sources. It is still not possible to relate all the observed PM$_{10}$ mass to specific sources or to be certain about the relative contributions of different types of source, some of which remain obscure. Targeted improvements in the monitoring network, including enhanced monitoring of chemical components of the particulate mass, would help to clarify these questions and uncertainties. These improvements should include the deployment of monitors for particulate sulphate, nitrate, elemental and organic carbon and iron. It is also recommended that further rural PM$_{10}$ and PM$_{2.5}$ monitoring is undertaken to assess the background levels of particulate matter and hence determine the urban increment and to aid the understanding of particulate matter episodes. Co-location of particulate sulphate monitors with existing rural ozone, particulate nitrate, PM$_{10}$ and PM$_{2.5}$ measurements would contribute substantially to our understanding of the link between elevated regional particulate matter concentrations and the concentrations of individual components.

It is clear that while road traffic emissions are a major source of particulate matter near to roads, the regional background contribution, both rural and urban, is still dominant and must form a central component of mitigation strategies. AQEG recommends that consideration be given to additional forms of regulation to reduce mean population exposure, complementing concentration-based limit values, which tend to focus attention on local hotspots. The regional contribution and the links between the concentrations of different pollutants demonstrate the need for a more holistic approach to urban air quality management and its coupling to the control of acid rain, eutrophication and ground-level ozone.