Emissions of volatile organic compounds from plants and their role in air quality

Nick Hewitt

Lancaster University, Lancaster LA1 4YQ UK

Emissions of volatile organic compounds from plants and their role in air quality

- 1. What controls VOC emission rates from plants
- 2. A BVOC emission inventory for GB
- 3. Uncertainties, a surprise and next steps

Protection against biotic and abiotic stresses – T, ox, bugs

Communication friends and neighbours

> Effects oxidant budget, particle formation, methane lifetime

air quality ozone PM

Which plants produce reactive VOCs?

Probably all, but only some in significant quantities

Which plants produce isoprene? In the UK:

Some, but not all: Mosses Ferns Gymnosperms (conifers) Angiosperms (flowering plants)

Spruce, especially Sitka spruce Poplar, willow, oak

Other compounds

Monoterpene and sesquiterpenes

```
Aldehydes, ketones (C_6), alcohols
```

In the UK:

Spruce

Crop harvesting, grass cutting

What controls VOC emission rates?

What controls isoprene emissions?

Leaf T Incident PAR

Circadian control Leaf age Leaf growth T

[CO₂] increasing [CO₂] decreases IE [O₃] increasing [O₃] *decreases* IE

What does not control isoprene emissions?

Water stress

What controls other BVOC emissions?

Wounding, including harvesting and herbivory

Modelling BVOC emission rates

light- and temperature-dependent emissions (isoprene and some monoterpenes):

 $I = I_s C_L C_T$

- Ι isoprene emission rate at temp T and PAR flux L
- $I_{s} C_{L}$ isoprene emission rate at standard T and PAR
- light response function
- temp response function Ст

temperature-dependent (light-independent) emissions (most monoterpenes):

$M = M_{s} exp(\beta(T - T_{s}))$

- Μ MT emission rate at temp T
- M MT emission rate at standard T
- empirical coefficient (K⁻¹) β

T is leaf T, normally assumed to be surface air T

A BVOC emissions inventory for Great Britain (Stewart et al, JGR, 2003)

1: Geographically referenced species data – area and biomass (Stewart et al, Biomass and Bioenergy, 2008)

- ITE land classification each 1 x 1 km assigned to one of 32 land classes based on 56 land cover types
- Countryside Survey: quantitative mapping of 1100 most prevalent plant and tree species on 1 km x 1 km grid
- Mean species cover area and foliar biomass calculated
- Annual growth cycle (monthly biomass) simulated, incl crop harvesting

Largest area coverage		Largest bioma	ss – summer
Moss Rye grass Wheat Heather14	27,000 km ² 25,000 25,000 ,000	Rye grass Wheat Barley Sitka spruce	25 Mt 19 Mt 16 Mt 7 Mt
Sitka	5,000	Sitka spruce Heather	– winter

2: Species-specific emission potentials www.es.lancs.ac.uk/cnhgroup/iso-emissions.pdf

I and MT emission potentials at 30°C/1000 μ E PAR assigned to each 1100 species

- Measurements 9% (I) and 7% (MT)
- Taxonomic assignment method 70% (informed guess...)
- Default ~20%

		Isopre	ene	MT
		µg g⁻¹ h⁻¹		
e.g.	Rye grass 0	()	
	Sitka spruce	3.3		3.3
	Oak	38		1

3: Meteorology

MM5 used to generate hourly T, PAR etc at 12 x 12 km (1998)

- Output compared with data and analysis of Parker and Horton (1999)
- Warmer than 30 year annual mean
- Cooler cloudier June than 30 year mean

4: Biogenic emissions model

 $Flux = f(area_{sp}, biomass_{sp}, Ep_{sp}, ECF_{CL,CT})$

Species area and biomass – monthly T, PAR – hourly 12 x 12 km MT emissions – T dependent only Leaf T assumed to equal air T PAR estimated from surface radiation

Monthly isoprene (kg km⁻² month⁻¹)

Isoprene 8 kt y⁻¹

Total monoterpenes 83 kt y⁻¹

c.f. anthrop VOC flux 1800 kt y⁻¹

Hour

Comparison with previous BVOC flux estimates for GB

Iso MT (kt y⁻¹)

G95		110	145	56 x 27 km
S99	58	31		150 x 150 km
S03	8	83		12 x 12 km

S03:

- lower EP for oak
- higher resolution for T
- better (surveyed) species distribution
 less sitka area
- •Note: 40% of total IE from sitka spruce

Sensitivity analysis GB isoprene flux - July

- + 100% willow biomass + 10% + 100% sitka EP + 28
- + 14% + 1°C + 2°C + 31
- + 3°C + 50
- 13% - 1°C - 2°C - 24 - 34
- 3°C

Uncertainty analysis

Annual flux +/- 200%

Emission potentials – use of defaults/"best-guess" Species-specific biomass Temperature

Seasonality in EP Leaf T PAR-dependent MT emissions Canopy PAR and T profiles Species distribution

Other compounds

Oxygenated compounds after crop harvesting

Karl et al, 2000 – grass - for about 48 hours after cutting Davison et al, 2008

methanol	$1.0 - 8 \text{ mg m}^{-2} \text{ h}^{-1} > \text{IE} (x \ 10 - 10^2)$
acetaldehyde	0.5 – 3
hexenal	0.1-2
acetone	0.1-2

UK arable crops ~60,000 km² (50% cereals)

Marylebone Rd (5 y) iso-pentane v benzene and isoprene v benzene, sorted by temperature (Langford et al., 2009)

Scatter plots showing the relationship between isoprene and benzene concentrations over a range of temperatures for Marylebone Rd (5 years of data). The y intercept shows the amount of isoprene present not attributable to traffic sources. We use this value, expressed as a percentage of the total isoprene observed at each temperature band (e.g. range) to estimate the biogenic isoprene contribution. To avoid outliers we used the 5th and 95th percentiles for the range.

Figure 8. Plot showing the temperature dependency of isoprene (circles), toluene (diamonds) and iso-pentane (triangles) concentrations, calculated using 5 years of hydrocarbon data collected at the Marylebone Road automatic monitoring station and temperature data from the London weather centre. Temperature bands -5 - 0 °C, n = 114; 0-5 °C, n = 3405; 5-10 °C, n = 9539; 10-15 °C, n = 12176; 15-20 °C, n = 9340; 20-25 °C, n = 3171; 25-30 °C, n = 673; 30-35 °C, n = 73. (Langford et al., 2009)

Requirements for air quality modelling and assessment

Better resolved BVOC emissions inventory (hourly 1 km x 1 km)

Better understanding of other BVOC emissions (including after crop harvesting Better controlled-environment measurements Better T, species distributions, biomass fields

Focus on short duration, high T episodes

Validation by eddy covariance flux measurements